Tensor Decomposition and Its Applications in Machine Learning

Zhongkai Hao

Content

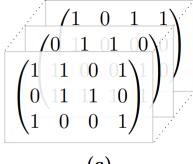
- Introduction to tensor decomposition
- Application-- NERF
- Application–Solving high dimensional PDE
- Application– Neural network compression

Definition of Tensor

- In mathematics, tensor is a high dimensional array
- Example of 1d, 2d, 3d tensor

(1)	/1	0	1	0		
$\begin{pmatrix} 1\\0\\1\\1\\0 \end{pmatrix}$	0	1	1	0		
1	1	1	0	1		
1	1	0	1	0		
$\langle 0 \rangle$	$\setminus 0$	1	0	$\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$		
(a)		(b)				

$$\mathbf{T} \in \mathbb{R}^{n_1 \times \cdots \times n_d},$$



(c)

• Storage consumption of a tensor $O(n^d)$

Tensor Calculus

• Addition $(\mathbf{T} + \mathbf{U})_{x_1,...,x_d} = \mathbf{T}_{x_1,...,x_d} + \mathbf{U}_{x_1,...,x_d}.$

• Scalar multiply
$$(\lambda \cdot \mathbf{T})_{x_1,...,x_d} = \lambda \cdot \mathbf{T}_{x_1,...,x_d}.$$

• Index contraction $\mathbf{T} \in \mathbb{R}^{m_1 \times \ldots \times m_d \times p_1 \times \ldots \times p_f}$,

$$\mathbf{U} \in \mathbb{R}^{n_1 \times \ldots \times n_e \times p_1 \times \ldots \times p_f}.$$

$$\mathbf{V}_{x_1,...,x_d,y_1,...,y_e} = \sum_{z_1=1}^{p_1} \cdots \sum_{z_f=1}^{p_f} \mathbf{T}_{x_1,...,x_d,z_1,...,z_f} \cdot \mathbf{U}_{y_1,...,y_e,z_1,...,z_f}.$$

• Tensor multiplication

Definition 2.2.3. For tensors $\mathbf{G} \in \mathbb{R}^{M \times N}$ and $\mathbf{H} \in \mathbb{R}^{N \times P}$ with index sets $M = (m_1, \ldots, m_d)^T$, $N = (n_1, \ldots, n_d)^T$, and $P = (p_1, \ldots, p_d)^T$, the product $\mathbf{G} \cdot \mathbf{H} \in \mathbb{R}^{M \times P}$ is defined as

$$\left(\mathbf{G}\cdot\mathbf{H}\right)_{x_1,y_1,\dots,x_d,y_d} = \sum_{z_1=1}^{n_1}\dots\sum_{z_d=1}^{n_d}\mathbf{G}_{x_1,z_1,\dots,x_d,z_d}\cdot\mathbf{H}_{z_1,y_1,\dots,z_d,y_d},$$
(2.2.3)

Tensor Calculus

- Tensor product $(\mathbf{T} \otimes \mathbf{U})_{x_1,\dots,x_d,y_1,\dots,y_e} = \mathbf{T}_{x_1,\dots,x_d} \cdot \mathbf{U}_{y_1,\dots,y_e},$
- Property of tensor product

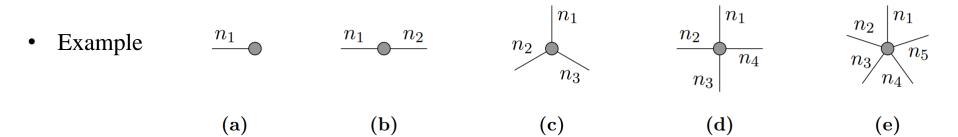
Theorem 2.2.6. Let $\mathbf{G} \in \mathbb{R}^{M \times N}$ and $\mathbf{H} \in \mathbb{R}^{N \times P}$ with $\mathbf{G} = \mathbf{G}_1 \otimes \mathbf{G}_2$ and $\mathbf{H} = \mathbf{H}_1 \otimes \mathbf{H}_2$, where

$$\mathbf{G}_1 \in \mathbb{R}^{(m_1 \times n_1) \times \ldots \times (m_e \times n_e)}, \quad \mathbf{G}_2 \in \mathbb{R}^{(m_{e+1} \times n_{e+1}) \times \ldots \times (m_d \times n_d)},$$
$$\mathbf{H}_1 \in \mathbb{R}^{(n_1 \times p_1) \times \ldots \times (n_e \times p_e)}, \quad \mathbf{H}_2 \in \mathbb{R}^{(n_{e+1} \times p_{e+1}) \times \ldots \times (n_d \times p_d)}.$$

Then, the product of \mathbf{G} and \mathbf{H} is given by

$$\mathbf{G} \cdot \mathbf{H} = (\mathbf{G}_1 \otimes \mathbf{G}_2) \cdot (\mathbf{H}_1 \otimes \mathbf{H}_2) = (\mathbf{G}_1 \cdot \mathbf{H}_1) \otimes (\mathbf{G}_2 \cdot \mathbf{H}_2).$$

Graphical representation of tensor



• Representing index contraction and tensor multiplication

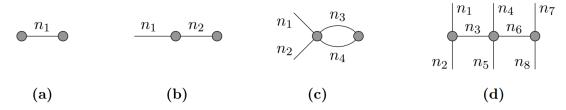


Figure 2.3: Graphical representation of tensor contractions: (a) Inner product of two vectors. (b) Matrix-vector product. (c) Two-dimensional contraction of two tensors. (d) Contraction of three tensors.

Matricization and Vectorization

$$\phi_N: \{1, \dots, n_1\} \times \dots \times \{1, \dots, n_d\} \to \{1, \dots, \prod_{k=1}^d n_k\},\$$

• Define a bijection

$$\phi_N(x_1, \dots, x_d) = 1 + (x_1 - 1) + \dots + (x_d - 1) \cdot n_1 \cdot \dots \cdot n_{d-1}$$
$$= 1 + \sum_{k=1}^d (x_k - 1) \prod_{l=1}^{k-1} n_l.$$

Definition 2.4.2. Let $N = (n_1, \ldots, n_d)^T$ be an index set and $\mathbf{T} \in \mathbb{R}^N$ a tensor. For two ordered subsets $N' = (n_{k_1}, \ldots, n_{k_e})^T$ and $N'' = (n_{l_1}, \ldots, n_{l_f})^T$ of N which satisfy (2.4.3), the matricization of \mathbf{T} with respect respect to N' and N'' is given by

- Matricization
- Vectorization

$$\left(\mathbf{T}\Big|_{N'}^{N''}\right)_{\overline{x_{k_1},\dots,x_{k_e}},\overline{x_{l_1},\dots,x_{l_f}}} = \mathbf{T}_{x_1,\dots,x_d}.$$
(2.4.4)

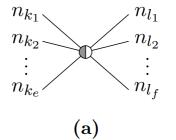
Definition 2.4.3. Let $N = (n_1, \ldots, n_d)^T$ be an index set and $\mathbf{T} \in \mathbb{R}^N$ a tensor. For a reordering $N' = (n_{k_1}, \ldots, n_{k_d})^T$, the vectorization of \mathbf{T} is given by

$$\left(\mathbf{T}\Big|_{N'}\right)_{\overline{x_{k_1},\dots,x_{k_d}}} = \mathbf{T}_{x_1,\dots,x_d}.$$

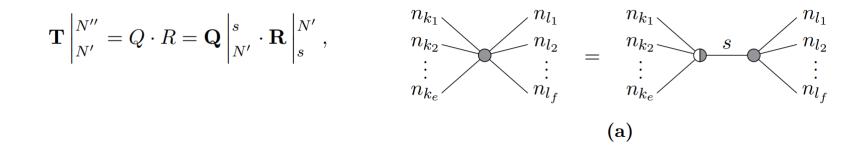
Orthonormality

• Definition 2.6.1. Let $\mathbf{T} \in \mathbb{R}^N$, $N = (n_1, \ldots, n_d)^T$, be a tensor and $N', N'' \subset N$ a splitting of the modes with $N' = (n_{k_1}, \ldots, n_{k_e})^T$ and $N'' = (n_{l_1}, \ldots, n_{l_f})^T$, e+f = d. \mathbf{T} is called orthonormal with respect to N' if the matricization of \mathbf{T} with respect to the sets N' and N'' (2.4.4) satisfies

$$\mathbf{T} \begin{vmatrix} N'' \\ N' \end{vmatrix} \cdot \left(\mathbf{T} \begin{vmatrix} N'' \\ N' \end{vmatrix} \right)^T = \mathbf{T} \begin{vmatrix} N'' \\ N' \end{vmatrix} \cdot \mathbf{T} \begin{vmatrix} N' \\ N'' \end{vmatrix} = I \in \mathbb{R}^{N' \times N'}$$



• QR decomposition



Tensor Decomposition

• Rank-one tensor

Definition 3.1.1. A tensor $\mathbf{T} \in \mathbb{R}^N$, $\mathbb{R}^N = \mathbb{R}^{n_1 \times \cdots \times n_d}$, of order d is called rank-one tensor if it can be written as the tensor product of d vectors, i.e.

$$\mathbf{T} = \bigotimes_{i=1}^{d} \mathbf{T}^{(i)} = \mathbf{T}^{(1)} \otimes \dots \otimes \mathbf{T}^{(d)}, \qquad (3.1.1)$$

where $\mathbf{T}^{(i)} \in \mathbb{R}^{n_i}$ for $i = 1, \ldots, d$.

- Storage consumption of rank-one tensor O(nd)
- Canonical format

$$\mathbf{T} = \sum_{k=1}^r \bigotimes_{i=1}^d \mathbf{T}_{k,:}^{(i)} = \sum_{k=1}^r \mathbf{T}_{k,:}^{(1)} \otimes \cdots \otimes \mathbf{T}_{k,:}^{(d)},$$

• Problems: best canonical format might not exist

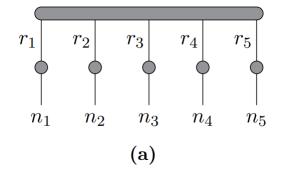
Tensor Decomposition

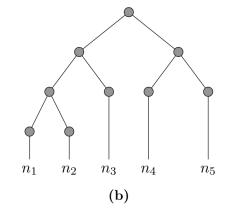
• Tucker format

Definition 3.3.1. A tensor $\mathbf{T} \in \mathbb{R}^N$ is said to be in the Tucker format if

$$\mathbf{T} = \sum_{k_1=1}^{r_1} \cdots \sum_{k_d=1}^{r_d} \left(\mathbf{T}_{:,k_1}^{(1)} \otimes \cdots \otimes \mathbf{T}_{:,k_d}^{(d)} \right) \cdot \mathbf{U}_{k_1,\dots,k_d}$$
$$= \left(\mathbf{T}^{(1)} \otimes \cdots \otimes \mathbf{T}^{(d)} \right) \cdot \mathbf{U},$$

- Graphical illustration of Tucker format
- Storage consumption $O(rnd + r^d)$
- Improved: Hierarchical Tucker format





Tensor Decomposition—Tensor Train format

- Tensor Train decomposition
- Definition 3.4.1. A tensor $\mathbf{T} \in \mathbb{R}^N$ is said to be in the TT format if

$$\mathbf{T} = \sum_{k_0=1}^{r_0} \cdots \sum_{k_d=1}^{r_d} \bigotimes_{i=1}^d \mathbf{T}_{k_{i-1},:,k_i}^{(i)} = \sum_{k_0=1}^{r_0} \cdots \sum_{k_d=1}^{r_d} \mathbf{T}_{k_0,:,k_1}^{(1)} \otimes \cdots \otimes \mathbf{T}_{k_{d-1},:,k_d}^{(d)}.$$

• query element using tensor train format

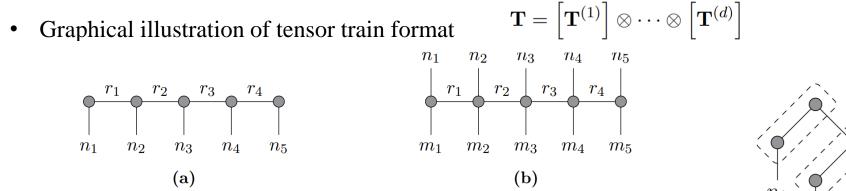
$$\mathbf{T}_{x_1,\dots,x_d} = \sum_{k_0=1}^{r_0} \cdots \sum_{k_d=1}^{r_d} \mathbf{T}_{k_0,x_1,k_1}^{(1)} \cdots \mathbf{T}_{k_{d-1},x_d,k_d}^{(d)} = \mathbf{T}_{:,x_1,:}^{(1)} \cdots \mathbf{T}_{:,x_d,:}^{(d)}.$$

• TT format for tensor operator

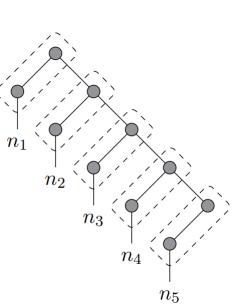
Definition 3.4.2. A tensor operator $\mathbf{G} \in \mathbb{R}^{M \times N}$ is said to be in the TT format if

$$\mathbf{G} = \sum_{k_0=1}^{r_0} \cdots \sum_{k_d=1}^{r_d} \bigotimes_{i=1}^d \mathbf{G}_{k_{i-1},:,k_i}^{(i)} = \sum_{k_0=1}^{r_0} \cdots \sum_{k_d=1}^{r_d} \mathbf{G}_{k_0,:,k_1}^{(1)} \otimes \cdots \otimes \mathbf{G}_{k_{d-1},:,k_d}^{(d)},$$

Tensor Train decomposition



- Memory consumption of tensor train formate $O(r^2nd)$
- Tensor train format as a special case of HT format



Addition/Multiplication for tensor train

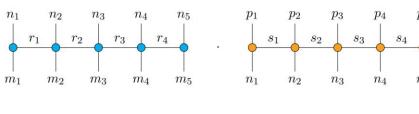
• Addition Theorem 3.4.4. For tensor operators $\mathbf{G}_1, \mathbf{G}_2 \in \mathbb{R}^{M \times N}$ with TT representations

$$\mathbf{G}_1 = \begin{bmatrix} \mathbf{G}_1^{(1)} \end{bmatrix} \otimes \cdots \otimes \begin{bmatrix} \mathbf{G}_1^{(d)} \end{bmatrix}, \quad \mathbf{G}_2 = \begin{bmatrix} \mathbf{G}_2^{(1)} \end{bmatrix} \otimes \cdots \otimes \begin{bmatrix} \mathbf{G}_2^{(d)} \end{bmatrix},$$

the sum $\mathbf{G} = \mathbf{G}_1 + \mathbf{G}_2$ is given by

$$\mathbf{G} = \left[\begin{bmatrix} \mathbf{G}_{1}^{(1)} \end{bmatrix} \begin{bmatrix} \mathbf{G}_{2}^{(1)} \end{bmatrix} \right] \otimes \begin{bmatrix} \begin{bmatrix} \mathbf{G}_{1}^{(2)} \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} \mathbf{G}_{2}^{(2)} \end{bmatrix} \end{bmatrix} \otimes \cdots \\ \cdots \otimes \begin{bmatrix} \begin{bmatrix} \mathbf{G}_{1}^{(d-1)} \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} \mathbf{G}_{2}^{(d-1)} \end{bmatrix} \end{bmatrix} \otimes \begin{bmatrix} \begin{bmatrix} \mathbf{G}_{1}^{(d)} \\ \end{bmatrix} \begin{bmatrix} \mathbf{G}_{2}^{(d)} \end{bmatrix} \right].$$

,

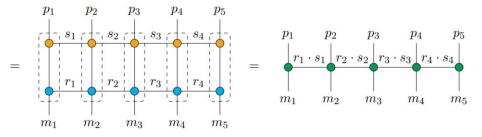


 p_5

 n_5

• Multiplication

$$\mathbf{G}_{\overline{k_{i-1},l_{i-1},\ldots,\overline{k_i},l_i}}^{(i)} = \left(\mathbf{G}_1^{(i)}\right)_{k_{i-1},\ldots,k_i} \cdot \left(\mathbf{G}_2^{(i)}\right)_{l_{i-1},\ldots,l_i}$$



Orthonormalization

• Left unfolding $\mathbf{T}^{(i)} \in \mathbb{R}^{r_{i-1} \times n_i \times r_i}$

$$\mathcal{L}\left(\mathbf{T}^{(i)}
ight) = \mathbf{T}^{(i)} \begin{vmatrix} r_i \\ r_{i-1}, n_i \end{vmatrix}$$

• Left orthonormal

$$\left(\mathcal{L}\left(\mathbf{T}^{(i)}\right)\right)^{T} \cdot \mathcal{L}\left(\mathbf{T}^{(i)}\right) = \mathbf{T}^{(i)} \begin{vmatrix} r_{i-1}, n_{i} \\ r_{i} \end{vmatrix} \cdot \mathbf{T}^{(i)} \begin{vmatrix} r_{i} \\ r_{i-1}, n_{i} \end{vmatrix} = I \in \mathbb{R}^{r_{i} \times r_{i}}.$$

 r_{d-1} $r_1 r_2$ • SVD of tensor train one by one Initial tensor train n_1 n_2 n_3 n_{d-1} n_d r_{d-1} r_2 Apply SVD n_{d-1} n_d n_1 n_2 n_3 r_{d-1} r_2 s_1 Update next core n_2 n_3 n_{d-1} n_d n_1 r_{d-1} s_1 -0--0- \bigcirc -0 Apply SVD n_2 n_3 n_{d-1} n_d n_1 r_{d-1} s_1 s_2 Update next core n_{d-1} n_d n_1 n_2 n_3

Other tensor decomposition formats

• Quantized Tensor-Train Format

٠

• For tensor $\mathbf{G} \in \mathbb{R}^{M \times N}$, we could decompose its dimension $m_i = m_{i,1} \cdot \ldots \cdot m_{i,c_i}$ and $n_i = n_{i,1} \cdot \ldots \cdot n_{i,c_i}$,

 $\mathbf{G}' \in \mathbb{R}^{(m_{1,1} \times n_{1,1}) \times \dots \times (m_{1,c_1} \times n_{1,c_1}) \times \dots \times (m_{d,1} \times n_{d,1}) \times \dots \times (m_{d,c_d} \times n_{1,c_d})}$

• Then apply TT format to this tensor

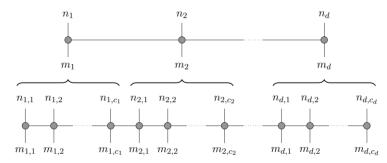


Figure 3.9: Conversion from TT into QTT format: Each core is divided into several cores with smaller mode sizes.

• block TT/ cycle TT n_1 n_{p-1} n_p n_{p+1} n_d n_1 n_2 n_3 n_{d-1} n_d

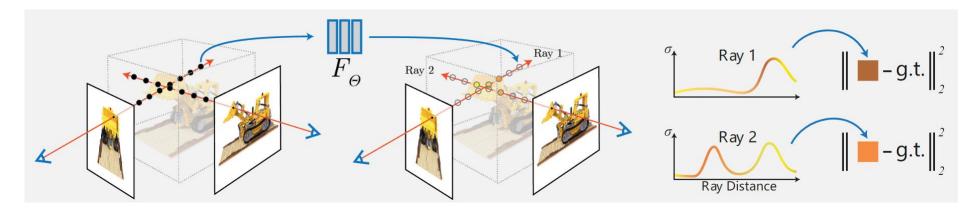
 r_d

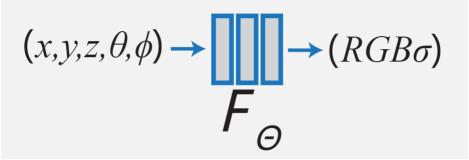
Applications of Tensor decomposition in machine learning

- Tensor decomposition offers a approximation for high dimensional data.
- Current applications of tensor decomposition
- Neural radiance field
- Solving high dimensional PDEs
- Second order optimizer
- Neural network/Data compression...

Neural Radiance Fields

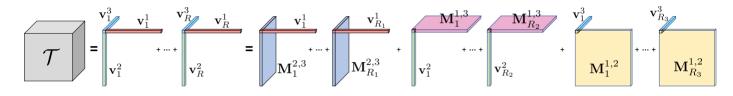
- Neural radiance field
- Problem: given a set of images with camera parameters, output images at other camera parameters
- Network io: xyz->rgb
- Loss function of NERF $\mathcal{L} = \sum_{r \in R} \left[\left\| \hat{C}_c(r) C(r) \right\|_2^2 \left\| \hat{C}_f(r) C(r) \right\|_2^2 \right]$
- Drawbacks of NerF: slow training

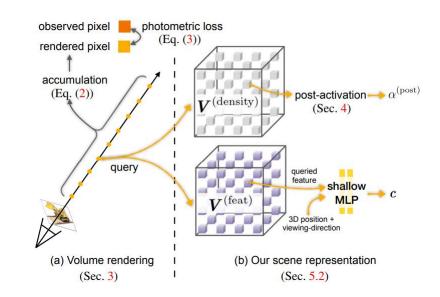




TensoRF (compressed voxel)

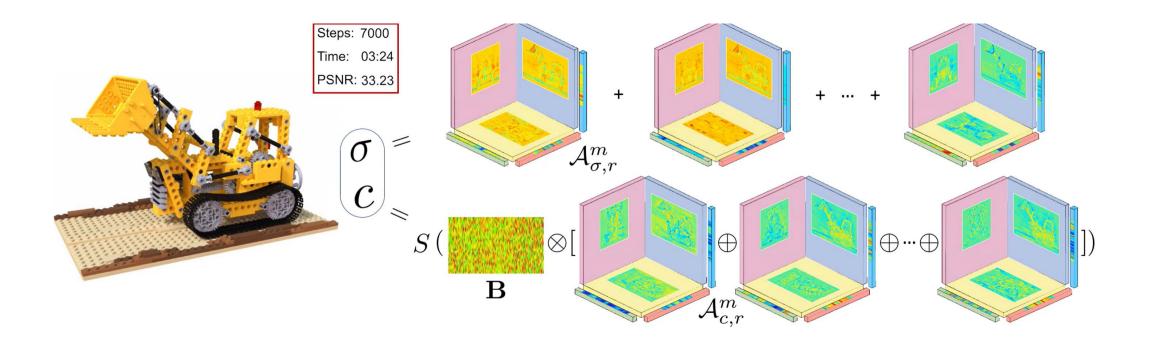
- Voxel based scene representation is much faster
- However, it requires $O(n^3)$ to store the voxels
- Tensor decomposition provides a promising compression scheme
- 1. TensorCP
- 2. TensorVM (vector-matrix)





TensoRF

• visualization result



TensoRF

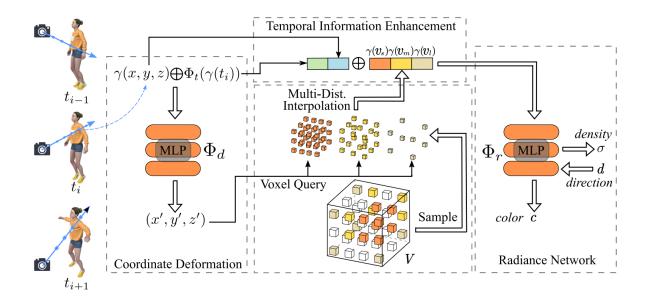
- Compression result for TensoRF
- Good trade-off performance between speed (~30min training time) and memory

	Synthetic-NeRF					
Method	BatchSize	Steps	Time \downarrow	$Size(MB)\downarrow$	$\mathrm{PSNR}\uparrow$	SSIM↑
SRN [36]	-	-	>10h	-	22.26	0.846
NSVF [18]	8192	150k	$>48^{*}h$	-	31.75	0.953
NeRF [24]	4096	300k	$\sim \! 35 \mathrm{h}$	5.00	31.01	0.947
SNeRG [12]	8192	250k	$\sim \! 15h$	1771.5	30.38	0.950
PlenOctrees [47]	1024	200k	$\sim \! 15 \mathrm{h}$	1976.3	31.71	0.958
Plenoxels [46]	5000	128k	11.4m	778.1	31.71	0.958
DVGO [37]	5000	30k	$15.0\mathrm{m}$	612.1	31.95	0.957
Ours-CP-384	4096	30k	$25.2\mathrm{m}$	3.9	31.56	0.949
Our-VM-192-SH	4096	30k	$16.8\mathrm{m}$	71.9	32.00	0.955
Ours-VM-48	4096	30k	13.8m	18.9	32.39	0.957
Ours-VM-192	4096	15k	8.1m	71.8	32.52	0.959
Ours-VM-192	4096	30k	$17.4\mathrm{m}$	71.8	33.14	0.963

Dynamic NERF

- Four dimensional voxel (4d tensor) is unaffordable!
- Use multi-resolution 3d voxel + MLP for compressing

- 1. query voxel features from multiple resolution
- 2. query time features using MLP with fourier ebd
- 3. concat features and use another MLP(deformnet)



Dynamic NERF

Method	w/ Tim	e Enc.	w/ Explici	t Rep.	Time	Storage	PSNR ↑	SSIM ↑	LPIPS ↓
NeRF [Mildenhall et al. 20	20]	(×		~ hours	5 MB	19.00	0.87	0.18
DirectVoxGO [Sun et al. 2	022]	(\checkmark		5 mins	205 MB	18.61	0.85	0.17
Plenoxels [Yu et al. 2022]	×	(\checkmark		6 mins	717 MB	20.24	0.87	0.16
T-NeRF [Pumarola et al. 2	021] 🗸	1	×		~ hours	-	29.51	0.95	0.08
D-NeRF [Pumarola et al. 2	2021]	1	×		20 hours	4 MB	30.50	0.95	0.07
TiNeuVox-S (ours)	v	1	\checkmark	1	8 mins	8 MB	30.75	0.96	0.07
TiNeuVox-B (ours)	✓	/	\checkmark		28 mins	48 MB	32.67	0.97	0.04
Hook			Jumpir	ng Jacks				Lego	
		/	8	1	1				
K) K)	P.S.	1 North Contraction	AL						
GT D-NeRF TiNeuVox-	S TiNeuVox-B	GT	D-NeRF	TiNeuVox-	-S TiNeuVox-E	GT GT	D-NeRI	TiNeuVo	x-S TiNeuVo

Table 1: Comparisons about training/memory cost and rendering quality on synthetic scenes.

- (ours) (ours) (ours) (ours) (ours) (ours) Figure 4: Qualitative comparisons between D-NeRF [Pumarola et al. 2021] and our TiNeuVox on synthetic scenes.
- Observations •
- 1. voxel with tensor decomposition provides good explainability and speed-memory trade-off
- 2. combine neural methods with voxel methods are better (... need tune parameters)

Solving high dimensional PDEs

• High dimensional parabolic PDEs with the following terminal condition and vanishing boundary condition,

$$(\partial_t + L)V(x,t) + h(x,t,V(x,t),(\sigma^\top \nabla V)(x,t)) = 0 \quad (1)$$
$$L = \frac{1}{2} \sum_{i,j=1}^d (\sigma \sigma^\top)_{ij}(x,t) \partial_{x_i} \partial_{x_j} + \sum_{i=1}^d b_i(x,t) \partial_{x_i},$$
$$V(x,T) = g(x),$$

• For such PDEs, the solution is associated with the following stochastic process

$$dX_s = b(X_s, s) ds + \sigma(X_s, s) dW_s, \quad X_0 = x_0,$$
$$Y_s = V(X_s, s), \qquad Z_s = (\sigma^\top \nabla V)(X_s, s)$$

$$\mathrm{d}Y_s = -h(X_s, s, Y_s, Z_s)\,\mathrm{d}s + Z_s \cdot \mathrm{d}W_s,$$

• We could simulate the stochastic process as

$$\begin{aligned} \widehat{X}_{n+1} &= \widehat{X}_n + b(\widehat{X}_n, t_n) \Delta t + \sigma(\widehat{X}_n, t_n) \xi_{n+1} \sqrt{\Delta t}, \\ \widehat{Y}_{n+1} &= \widehat{Y}_n - h_n \Delta t + \widehat{Z}_n \cdot \xi_{n+1} \sqrt{\Delta t}, \end{aligned}$$

Solving high dimensional PDEs

• In each time step, we solve the following least square problem

$$\mathbb{E}\left[\left(\widehat{V}_{n}(\widehat{X}_{n})-h_{n+1}\Delta t-\widehat{V}_{n+1}(\widehat{X}_{n+1})\right)^{2}\right]$$

• Representing solution with tensor train format

$$\widehat{V}(x_1, \dots, x_d) = \sum_{i_1=1}^m \dots \sum_{i_d=1}^m c_{i_1, \dots, i_d} \phi_{i_1}(x_1) \dots \phi_{i_d}(x_d),$$

$$\widehat{V}(x) = \underbrace{\begin{array}{cccc} u_1 & r_1 & u_2 & r_3 & u_4 \\ m & m & m & m \\ \phi(x_1) & \phi(x_2) & \phi(x_3) & \phi(x_4) \end{array}}_{\phi(x_4)}$$

ra

ro

ra

• We choose polynomial functions as basis functions for $\varphi(x)$.

Solving high dimensional PDEs

$$\underset{\widehat{V}\in\mathcal{U}}{\operatorname{arg\,min}}\sum_{j=1}^{J}|\widehat{V}(x_j)-R(x_j)|^2,$$

- Solving the regression problem using SALSA (rank adaptive stable alternating least s
- Simple LS algorithm
- Simulate the PDE

Algorithm 1 simple ALS algorithmInput: initial guess $u_1 \circ u_2 \circ \cdots \circ u_d$.Output: result $u_1 \circ u_2 \circ \cdots \circ u_d$.repeatfor i = 1 to d doidentify the local basis functions (19), parametrizedby $u_k, k \neq j$ optimize u_i using the local basis by solving the localleast squares problemend foruntil noChange is true

Algorithm 2 PDE approximationInput: initial parametric choice for the functions \hat{V}_n for $n \in \{0, \dots, N-1\}$ Output: approximation of $V(\cdot, t_n) \approx \hat{V}_n$ along the trajectories for $n \in \{0, \dots, N-1\}$ Simulate K samples of the discretized SDE (7).Choose $\hat{V}_N = g$.for n = N - 1 to 0 doapproximate either (10) or (11) (both depending on \hat{V}_{n+1}) using Monte Carlominimize this quantity (explicitly or by iterative schemes)set \hat{V}_n to be the minimizerend for

 r_1

 u_1

 $\phi(x_1$

m

 r_2

m

 $\phi(x_2)$

 u_3

 $\phi(x_3)$

m

 u_4

 $\phi(x_4)$

m

Examples

• Hamilton-Jacobi-Bellman equation

$$(\partial_t + \Delta) V(x,t) - |\nabla V(x,t)|^2 = 0,$$

$$V(x,T) = g(x), \qquad g(x) = \log\left(\frac{1}{2} + \frac{1}{2}|x|^2\right)$$

$$b = \mathbf{0}, \quad \sigma = \sqrt{2} \operatorname{Id}_{d \times d}, \quad h(x,s,y,z) = -\frac{1}{2}|z|^2$$

$$V(x,t) = -\log \mathbb{E}\left[e^{-g(x+\sqrt{T-t}\sigma\xi)}\right].$$

Reference solution •

$$(x,t) = -\log \mathbb{E}\left[e^{-g(x+\sqrt{T-t}\sigma\xi)}\right],$$

Comparision between TT approximation and NN approximation ٠

	TT _{impl}	TT _{expl}	NN _{impl}	NN _{expl}
$\widehat{V}_0(x_0)$	4.5903	4.5909	4.5822	4.4961
relative error	$5.90e^{-5}$	$3.17e^{-4}$	$1.71e^{-3}$	$2.05e^{-2}$
reference loss	$3.55e^{-4}$	$5.74e^{-4}$	$4.23e^{-3}$	$1.91e^{-2}$
PDE loss	$1.99e^{-3}$	$3.61e^{-3}$	90.89	91.12
comp. time	41	25	44712	25178

Table 1. Comparison of approximation results for the HJB equation in d = 100.

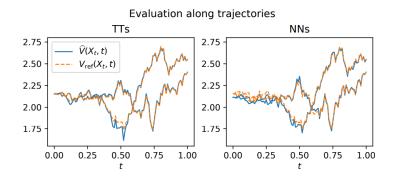


Figure 5. Reference solutions compared with implicit TT and NN approximations along two trajectories in d = 10.

Examples

- HJB equation
- Performance with different degree for basis function

	Polynom. degree				
	0	1	2	3	
$\widehat{V}_0(x_0)$	0.294	0.312	0.312	0.312	
PDE loss	$9.04e^{-2}$	$7.80e^{-4}$	$1.05e^{-3}$	$5.06e^{-4}$	
comp. time	110	3609	4219	5281	

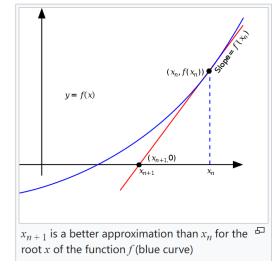
- We find that low polynomial degree (linear) is more efficient and are easier to optimize.
- Observation (blessing of dimensionality):
- The required polynomial degree decreases with increasing dimension. (almost constant in high dimensional space)

Second order optimizer-Low rank approximation of Hessian matrix

- Shampoo optimizer is a preconditioned gradient descent
- A general framework of quasi-newton method

$$\Delta x = -B^{-1}
abla f(x_k).$$

• For accurate Newton's method, B should be the Hessian matrix $\frac{\partial^2 f}{\partial x_i \partial x_j}$



- For quasi- Newton's method, B could be (low rank/block/...)approximation of Hessian matrix
- For NN with parameters N, the size of Hessian matrix is N^2 , inversion of Hessian is intractable

Second order optimizer of NN

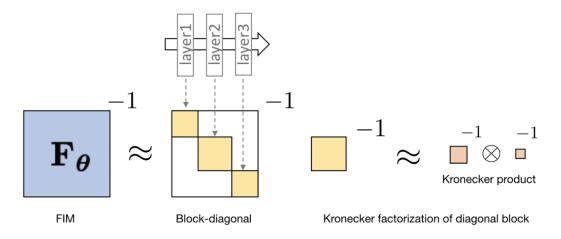
- Use approximation of Hessian matrix rather than the direct inversion
- Natural gradient descent

٠

$$\mathbf{F}_{\boldsymbol{\theta}} = \mathbb{E}_{(\mathbf{x},\mathbf{y})} \left[\nabla \log p(\mathbf{y}|\mathbf{x};\boldsymbol{\theta}) \nabla \log p(\mathbf{y}|\mathbf{x};\boldsymbol{\theta})^{\mathrm{T}} \right]$$

Update of NGD
$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \epsilon \left[\mathbf{F}_{\boldsymbol{\theta}^{(t)}}^{-1} \nabla E(\boldsymbol{\theta}^{(t)}) \right]$$

• Under layer independence simplication, we have



Approximation of (inverse of) FIM by K-FAC

Second order optimizer of DNN

- Every submatrix is a Kronecker product (tensor product)
- Its inversion is

 $(\mathbf{A} \otimes \mathbf{B})^{-1} = \mathbf{A}^{-1} \otimes \mathbf{B}^{-1}$

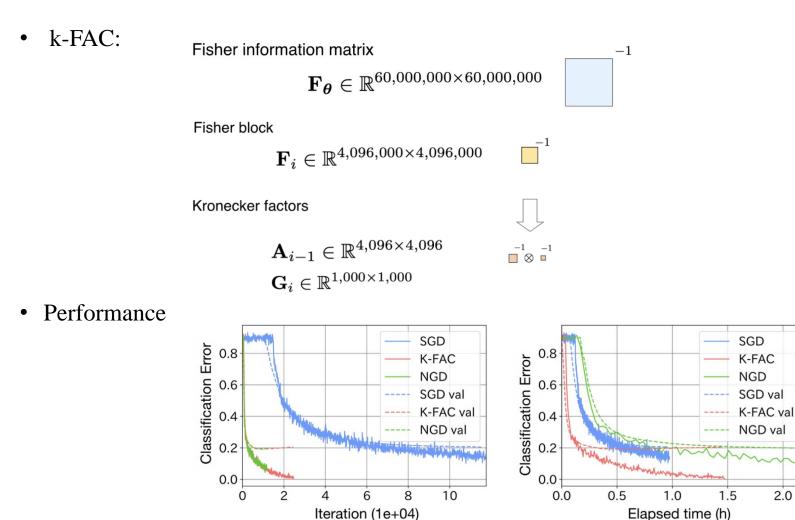
• Specifically, each block is calculated by

 $\begin{aligned} \mathbf{F}_{i} &= \mathbb{E}\left[\nabla_{i}\log p(\mathbf{y}|\mathbf{x};\boldsymbol{\theta})\nabla_{i}\log p(\mathbf{y}|\mathbf{x};\boldsymbol{\theta})^{\mathrm{T}}\right]\\ &\nabla_{i}\log p(\mathbf{y}|\mathbf{x};\boldsymbol{\theta}) = \mathbf{g}_{i}\otimes \mathbf{a}_{i-1}\in \mathbb{R}^{d_{i-1}} \cdot d_{i}\\ &\mathbf{a}_{i-1}\in \mathbb{R}^{d_{i-1}} \quad : \text{the input to } i\text{-th layer (activation of (i-1)-th layer)}\\ \end{aligned}$ $\begin{aligned} \mathbf{g}_{i} &= \frac{\partial \log p(\mathbf{y}|\mathbf{x};\boldsymbol{\theta})}{\partial \mathbf{s}_{i}} \in \mathbb{R}^{d_{i}} : \text{the gradient for the output of } i\text{-th layer}\\ \mathbf{F}_{i} &\approx \mathbb{E}\left[\mathbf{g}_{i}\mathbf{g}_{i}^{\mathrm{T}}\right] \otimes \mathbb{E}\left[\mathbf{a}_{i-1}\mathbf{a}_{i-1}^{\mathrm{T}}\right]\\ &= \mathbf{G}_{i}\otimes \mathbf{A}_{i-1}\end{aligned}$

$$\mathbf{A} \otimes \mathbf{B} := \left(egin{array}{cccc} [\mathbf{A}]_{1,1} \, \mathbf{B} & \cdots & [\mathbf{A}]_{1,n} \, \mathbf{B} \ dots & dots & dots & dots \ dots & dots & dots & dots & dots \ [\mathbf{A}]_{m,1} \, \mathbf{B} & \cdots & [\mathbf{A}]_{m,n} \, \mathbf{B} \end{array}
ight) \in \mathbb{R}^{ma imes nb}$$

$$\mathbf{A} \in \mathbb{R}^{m imes n}, \mathbf{B} \in \mathbb{R}^{a imes b}$$
: Kronecker factors

Second order optimizer



2.0

Second order optimizer

• Shampoo: quasi-newton optimizer for matrix (left) and tensor (right)

Initialize $W_1 = \mathbf{0}_{m \times n}$; $L_0 = \epsilon I_m$; $R_0 = \epsilon I_n$ for t = 1, ..., T do Receive loss function $f_t : \mathbb{R}^{m \times n} \mapsto \mathbb{R}$ Compute gradient $G_t = \nabla f_t(W_t) \{G_t \in \mathbb{R}^{m \times n}\}$ Update preconditioners:

$$L_t = L_{t-1} + G_t G_t^\mathsf{T}$$
$$R_t = R_{t-1} + G_t^\mathsf{T} G_t$$

Update parameters:

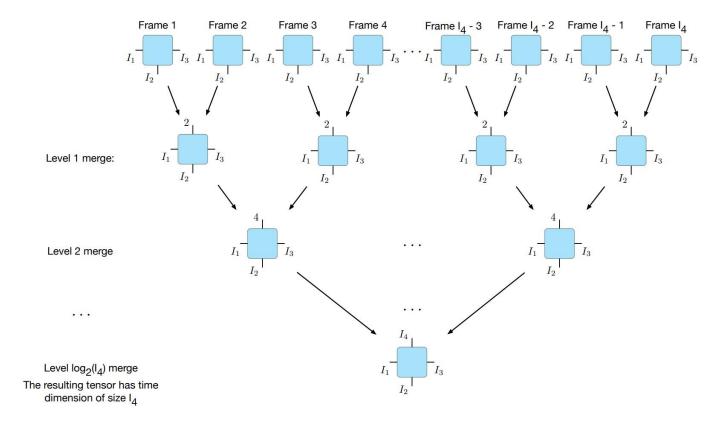
$$W_{t+1} = W_t - \eta L_t^{-1/4} G_t R_t^{-1/4}$$

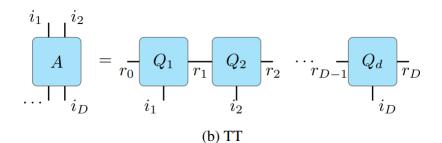
• The inversion of Lt using Schur-Newton method with cache

Initialize: $W_1 = \mathbf{0}_{n_1 \times \dots \times n_k}$; $\forall i \in [k] : H_0^i = \epsilon I_{n_i}$ for $t = 1, \dots, T$ do Receive loss function $f_t : \mathbb{R}^{n_1 \times \dots \times n_k} \mapsto \mathbb{R}$ Compute gradient $G_t = \nabla f_t(W_t) \{G_t \in \mathbb{R}^{n_1 \times \dots \times n_k}\}$ $\widetilde{G}_t \leftarrow G_t \{\widetilde{G}_t \text{ is preconditioned gradient}\}$ for $i = 1, \dots, k$ do $H_t^i = H_{t-1}^i + G_t^{(i)}$ $\widetilde{G}_t \leftarrow \widetilde{G}_t \times_i (H_t^i)^{-1/2k}$ Update: $W_{t+1} = W_t - \eta \widetilde{G}_t$

Data compression with tensor train format

• A multi-level tree like tensor train decomposition





Data compression with tensor train

Performance ٠

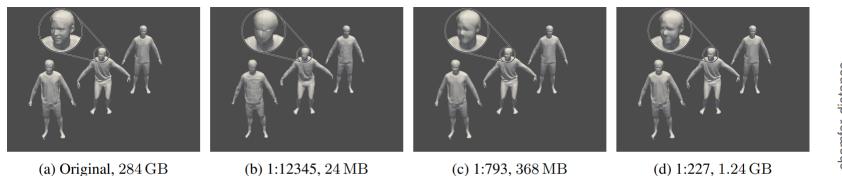
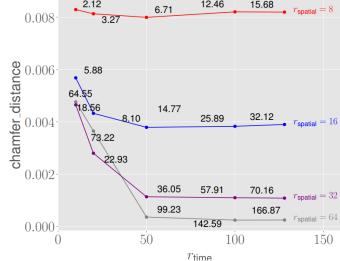


Figure 1: T4DT with different compression levels in OQTT format for a longshort-flying-eagle scene of resolution 512^3 with 284 time frames. Only frames 1, 142, and 284 are depicted. The compression ratio is different from the actual memory consumption due to the padding of the time dimension to 512. High compression is achieved with $r_{\rm max} = 400$, MSDM2 = 0.45 in Fig. 1b, medium compression with $r_{\rm max} = 1800$, MSDM2 = 0.32 in Fig. 1c, and low compression / high quality with $r_{\text{max}} = 4000$, MSDM2 = 0.29 in Fig. 1d.

 $d_{\mathrm{CD}}(\mathbf{A}, \mathbf{B}) = \sum_{a \in \mathbf{A}} \min_{b \in \mathbf{B}} ||x - y||^2 + \sum_{b \in \mathbf{B}} \min_{a \in \mathbf{A}} ||x - y||^2.$ Metric: Chamfer distance •



12.46

2.12

Summary

- Tensor decomposition is a basic data compression technique and function representer
- Pros
- Mature algorithms and strong interpretability
- Promising (time/memory) efficiency for high dimensional problems
- Cons
- Linear decomposition without prior
- Future works
- Better utilize tensor decomposition as tools in machine learning
- Combination of neural based methods and tensor based methods