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Definition of Tensor

• In mathematics, tensor is a high dimensional array 

• Example of 1d, 2d, 3d tensor

• Storage consumption of a tensor  𝑂(𝑛𝑑)



Tensor Calculus

• Addition

• Scalar multiply

• Index contraction

• Tensor multiplication



Tensor Calculus

• Tensor product

• Property of tensor product



Graphical representation of tensor

• Example

• Representing index contraction and tensor multiplication 



Matricization and Vectorization

• Define a bijection

• Matricization

• Vectorization



Orthonormality

•

• QR decomposition 

•



Tensor Decomposition

• Rank-one tensor

• Storage consumption of rank-one tensor 𝑂 𝑛𝑑

• Canonical format

• Problems: best canonical format might not exist 



Tensor Decomposition

• Tucker format

• Graphical illustration of Tucker format

• Storage consumption 𝑂 𝑟𝑛𝑑 + 𝑟𝑑

• Improved: Hierarchical Tucker format



Tensor Decomposition—Tensor Train format

• Tensor Train decomposition

• \

• query element using tensor train format

• TT format for tensor operator



Tensor Train decomposition

• Graphical illustration of tensor train format

• Memory consumption of tensor train formate 𝑂(𝑟2𝑛𝑑)

• Tensor train format as a special case of HT format



Addition/Multiplication for tensor train

• Addition

• Multiplication



Orthonormalization

• Left unfolding

• Left  orthonormal

• SVD of tensor train one  by one 



Other tensor decomposition formats

• Quantized Tensor-Train Format

• For tensor                        ,we could decompose its dimension

•

• Then apply TT format to this tensor

• block TT/ cycle TT



Applications of Tensor decomposition in machine learning

• Tensor decomposition offers a approximation for high dimensional data.

• Current applications of tensor decomposition

• Neural radiance field

• Solving high dimensional PDEs

• Second order optimizer

• Neural network/Data compression…



Neural Radiance Fields

• Neural radiance field

• Problem: given a set of images with camera parameters, output images at other camera parameters

• Network io: xyz->rgb

• Loss function of NERF

• Drawbacks of NerF: slow training



TensoRF (compressed voxel)

• Voxel based scene representation is much faster

• However, it requires 𝑂 𝑛3 to store the voxels

• Tensor decomposition provides a promising compression scheme

• 1. TensorCP

• 2. TensorVM (vector-matrix)



TensoRF

• visualization result



TensoRF

• Compression result for TensoRF

• Good trade-off performance between  speed (~30min training time) and memory 



Dynamic NERF

• Four dimensional voxel (4d tensor) is unaffordable!

• Use multi-resolution 3d voxel + MLP for compressing

•

• 1. query voxel features from multiple resolution

• 2. query time features using MLP with fourier ebd

• 3. concat features and use another MLP(deformnet)



Dynamic NERF

• Observations

• 1. voxel with tensor decomposition provides good explainability and speed-memory trade-off

• 2. combine neural methods with voxel methods are better (… need tune parameters)



Solving high dimensional PDEs

• High dimensional parabolic PDEs with the following terminal condition and vanishing boundary condition,

• For such PDEs, the solution is associated with the following stochastic process

• We could simulate the stochastic process as 



Solving high dimensional PDEs

• In each time step, we solve the following least square problem 

• Representing solution with tensor train format

• We choose polynomial functions as basis functions for 𝜑(𝑥).



Solving high dimensional PDEs

• Solving the regression problem using SALSA (rank adaptive stable alternating least square)

• Simple LS algorithm

• Simulate the PDE 



Examples

• Hamilton-Jacobi-Bellman equation\

• Reference solution

• Comparision between TT approximation and  NN approximation



Examples

• HJB equation

• Performance with different degree for basis function

• We find that low polynomial degree (linear) is more efficient and are easier to optimize.

• Observation (blessing of dimensionality):

• The required polynomial degree decreases with increasing dimension. (almost constant in high dimensional 
space)



Second order optimizer– Low rank approximation of Hessian matrix

• Shampoo optimizer is a preconditioned gradient descent

• A general framework of quasi-newton method

• For accurate Newton’s method, B should be the Hessian matrix 
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗

• For quasi- Newton’s method, B could be (low rank/block/…)approximation of Hessian matrix

• For NN with parameters 𝑁, the size of Hessian matrix is 𝑁2, inversion of Hessian is intractable

•



Second order optimizer of NN

• Use approximation of Hessian matrix rather than the direct inversion

• Natural gradient descent

• Update of NGD

• Under layer independence simplication, we have



Second order optimizer of DNN

• Every submatrix is a Kronecker product (tensor product)

• Its inversion is 

• Specifically, each block is calculated by

• Finally, 



Second order optimizer

• k-FAC:

• Performance 



Second order optimizer

• Shampoo: quasi-newton optimizer for matrix (left) and tensor (right)

• The inversion of Lt using Schur-Newton method with cache 



Data compression with tensor train format

• A multi-level tree  like tensor train decomposition



Data compression with tensor train

• Performance

• Metric: Chamfer distance



Summary

• Tensor decomposition is a basic data compression technique and function representer

• Pros

• Mature algorithms and strong interpretability

• Promising (time/memory) efficiency for high dimensional problems

• Cons

• Linear decomposition without prior 

• Future works

• Better utilize tensor decomposition as tools in machine learning

• Combination of neural based methods and tensor based methods


