

Physics-Informed Machine Learning: A survey on Problems, Methods and Applications

Zhongkai Hao, Songming Liu, Yichi Zhang, Chengyang Ying, Yao Feng Hang Su, Jun Zhu

Survey on Physics-Informed Machine Learning

Content

- Introduction—why and how PIML
- Problem Formulation
- Neural Simulation
 - □ Neural Solver
 - Neural Operator
 - □ Theory
- Inverse Problem (Inverse Design)
- Computer Vision & Reinforcement Learning

Limitations of Statistical ML models

- Not robust
- □ Lack interpretability
- □ Violate physical constraints
- Current statistic learning are not aware of the internal physical mechanism that generates the data

Concept of Machine Learning

build models that leverage empirical data to improve performance on some set of tasks

Concept of Physics-Informed Machine Learning

build models that leverage empirical data and available physical prior knowledge to improve performance on a set of tasks that involve a physical mechanism

Representation of physical prior

- Des/ODEs/SDEs
- □ Symmetry
- □ Intuitive physics
- How to encode physical prior
 - 🗆 Data
 - □ Architecture
 - □ Loss functions
 - Optimizer
 - □ Inference

- Tasks of PIML
 - Neural Simulation
 - Neural Solver (PINN...)
 - Neural Operator (DeepONet, FNO...)
 - Inverse Problem
 - □ Computer Vision/Computer Graphics
 - Reinforcement Learning/Control

Representative works

- □ Methods for incorporating physical prior (left)
- □ Works for solving different tasks (right)

Problem Formulation

Problem formulation

□ View ML as an optimization problem

 $\min_{f\in\mathcal{H}}\mathcal{L}(f;\mathcal{D})+\Omega(f;\mathcal{D}).$

• The root of physical prior is data is physical

$$\mathcal{F}(\mathcal{D}) = 0,$$
$$\mathcal{D}_p = P(\mathcal{D})$$
$$f \in \mathcal{H}_p \subseteq \mathcal{H}.$$

- $\Box \text{ Loss/Reg } \mathcal{L}_p(f; \mathcal{D}) \text{ or } \Omega_p(f; \mathcal{D})$
- \Box Optimization OPT_p

Architecture

Data

 $\Box \text{ Inference } g_p(x, f(\boldsymbol{x}))$

Neural Simulation

Notations and Problem Formulation
 DDEs

$$\mathcal{F}\left(u,\frac{\partial u}{\partial x_1},\ldots,\frac{\partial u}{\partial x_d},\frac{\partial^2 u}{\partial x_1^2},\frac{\partial^2 u}{\partial x_1\partial x_2},\ldots,\frac{\partial^2 u}{\partial x_d^2},\ldots;\theta\right)(x_i,t)=0,$$

$$\mathcal{I}\left(u,\frac{\partial u}{\partial x_1},\ldots,\frac{\partial u}{\partial x_d},\frac{\partial^2 u}{\partial x_1^2},\frac{\partial^2 u}{\partial x_1\partial x_2},\ldots,\frac{\partial^2 u}{\partial x_d^2},\ldots;\theta\right)(x_i,t_0)=0,$$

$$\mathcal{B}\left(u,\frac{\partial u}{\partial x_1},\ldots,\frac{\partial u}{\partial x_d},\frac{\partial^2 u}{\partial x_1^2},\frac{\partial^2 u}{\partial x_1\partial x_2},\ldots,\frac{\partial^2 u}{\partial x_d^2},\ldots;\theta\right)(x_i,t)=0.$$

□ Neural Solver

$$\min_{w \in W} \|u_w(\boldsymbol{x}) - \tilde{u}(\boldsymbol{x})\|,$$

□ Neural Operator

$$\min_{w \in W} \|G_w(\theta)(\boldsymbol{x}) - \tilde{G}(\theta)(\boldsymbol{x})\|,$$

Neural Simulation

- Chronological overview
 - □ Neural Solver: DGM[1]/DRM[2]/PINN[3]...
 - □ Neural Operator: DeepONet[4]/FNO[5]...
 - □ Inverse Design: PINNs/DeepONets/AmorFEA[6]...

Survey on Physics-Informed Machine Learning

10

Basic PINNs

> □ Parametrize solution with NNs and optimize following loss

$$\begin{split} \mathcal{L} &= \frac{\lambda_r}{|\Omega|} \int_{\Omega} \|\mathcal{F}(u_w;\theta)(\boldsymbol{x})\|^2 \mathrm{d}\boldsymbol{x} + \frac{\lambda_i}{|\Omega_0|} \int_{\Omega_0} \|\mathcal{I}(u_w;\theta)(\boldsymbol{x})\|^2 \mathrm{d}\boldsymbol{x} \\ &+ \frac{\lambda_b}{|\partial\Omega|} \int_{\partial\Omega} \|\mathcal{B}(u_w;\theta)(\boldsymbol{x})\|^2 \mathrm{d}\boldsymbol{x} + \frac{\lambda_d}{N} \sum_{i=1}^N \|u_w(\boldsymbol{x}_i) - u(\boldsymbol{x}_i)\|^2, \end{split}$$

Graphical illustration of PINNs

Survey on Physics-Informed Machine Learning

11

Variants of PINNs

- Loss Reweighting and Data Resampling
- Novel optimization targets
 - Numerical Differentiation
 - Variational Formulation
 - Regularization terms
- Novel Neural Architectures
 - Activation functions
 - Feature preprocessing (embedding)
 - Boundary Encoding
 - Sequential Architecture/Convolutional Architecture
 - Domain Decomposition

- Loss Reweighting
 - □ Balance learning rates by gradient norms [7]

$$\hat{\lambda}_i = \frac{\max\{\nabla_w \mathcal{L}_r(w_n)\}}{|\nabla_w \mathcal{L}_i(w_n)|}.$$

$$\lambda_i \leftarrow (1 - \alpha)\lambda_i + \alpha \hat{\lambda}_i,$$

- □ NTK reweighting
- □ Variance reweighting
- □ ...
- Data Sampling
 - □ Sample points with higher error with IS [8]

$$\mathcal{L}_r = \mathbb{E}_{\boldsymbol{x} \sim q} \left[\frac{p(\boldsymbol{x})}{q(\boldsymbol{x})} \| \mathcal{F}(u)(\boldsymbol{x}) \|^2 \right]$$
$$q(\boldsymbol{x}_i) = \frac{\| \nabla_w l_r(w, \boldsymbol{x}_i) \|}{\sum_j \| \nabla_w l_r(w, \boldsymbol{x}_j) \|} \approx \frac{l_r(w, \boldsymbol{x}_i)}{\sum_j l_r(w, \boldsymbol{x}_j)}$$

Novel Optimization Targets--Variational Formulation
 For the following problem

$$egin{array}{rcl} \Delta u &=& f(m{x}), x\in\Omega, \ rac{\partial u}{\partial n} &=& 0, x\in\partial\Omega. \end{array}$$

□ PINN optimizes

$$\mathcal{L}(w) = \frac{\lambda_r}{|\Omega|} \int_{\Omega} \|\Delta u_w - f(\boldsymbol{x})\|^2 \mathrm{d}\boldsymbol{x} + \frac{\lambda_b}{|\partial\Omega|} \int_{\partial\Omega} \left\|\frac{\partial u_w}{\partial n}\right\|^2 \mathrm{d}\boldsymbol{x}$$

Deep Ritz Method [2] optimizes

$$\mathcal{J}(w) = \int_{\Omega} \left(\frac{1}{2} |\nabla u_w(\boldsymbol{x})|^2 - f(\boldsymbol{x}) u_w(\boldsymbol{x}) \right) d\boldsymbol{x}$$

□ VPINNs [9] choose a set of test functions

$$\mathcal{J}(w) = \frac{1}{K} \sum_{k=1}^{K} |\langle \mathcal{F}(u_w), v \rangle_{\Omega}|^2 + \lambda_b \frac{1}{N_b} \sum_{i=1}^{N_b} |u_w(\boldsymbol{x}_i) - g(\boldsymbol{x}_i)|^2.$$

- Novel Optimization Targets—Regularization terms
 Gradient-enhanced PINNs [10]
 - \Box For PDEs, we penalize itself as well as its derivatives

$$f\left(\mathbf{x};\frac{\partial u}{\partial x_{1}},\ldots,\frac{\partial u}{\partial x_{d}};\frac{\partial^{2} u}{\partial x_{1}\partial x_{1}},\ldots,\frac{\partial^{2} u}{\partial x_{1}\partial x_{d}};\ldots;\boldsymbol{\lambda}\right)=0, \quad \mathbf{x}=(x_{1},\cdots,x_{d})\in\Omega,$$

□ Loss function of gPINNs

$$\mathcal{L} = w_f \mathcal{L}_f + w_b \mathcal{L}_b + w_i \mathcal{L}_i + \sum_{i=1}^d w_{g_i} \mathcal{L}_{g_i} \left(\boldsymbol{\theta}; \mathcal{T}_{g_i}\right) + \mathcal{L}_{g_i} \left(\boldsymbol{\theta}; \mathcal{T}_{g_i}\right) = \frac{1}{|\mathcal{T}_{g_i}|} \sum_{\mathbf{x} \in \mathcal{T}_{g_i}} \left| \frac{\partial f}{\partial x_i} \right|^2$$

- Novel Architectures
 - □ Boundary encoding [11] (use hard boundary constraints)

□ Feature Embedding [12] (e.g. Fourier features)

 $\gamma(\boldsymbol{x}) = (\sin(2\pi\boldsymbol{b}_1^T \cdot \boldsymbol{x}), \cos(2\pi\boldsymbol{b}_1^T \cdot \boldsymbol{x}), \dots, \\ \sin(2\pi\boldsymbol{b}_m^T \cdot \boldsymbol{x}), \cos(2\pi\boldsymbol{b}_m^T \cdot \boldsymbol{x})).$

□ Adaptive activation functions [13]...

Novel Architectures

- □ Sequential Architectures [14]
 - Solves time-dependent PDEs and uses LSTM architectures

$$\mathcal{L}_{\text{reg}} = \left\| \frac{u_{i+1} - u_i}{\Delta t} - F\left(u_i, \frac{\partial u_i}{\partial x_1}, \dots, \frac{\partial u}{\partial x_d}, \dots, \theta\right) \right\|^2$$

Convolutional Architectures [14]

Replace spatial differentiation with numerical ones and use CNNs

 $D_2 * U$

$$D_{1} \approx \frac{1}{h^{2}} \begin{pmatrix} 1 & -2 & 1 \end{pmatrix}$$

$$D_{2} \approx \frac{1}{h^{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\Delta u(x, y) \approx$$

17

- Novel Architectures—Domain Decomposition
 XPINNs [15]: use K subnets for K subdomains
 - □ Loss functions:

$$\mathcal{L} = \sum_{k=1}^{K} (\lambda_r^k \mathcal{L}_r^k + \lambda_b^k \mathcal{L}_b^k + \lambda_i^k \mathcal{L}_i^k) + \sum_{m=1}^{M} \lambda_I^m \mathcal{L}_I^m.$$

- $\square \mathcal{L}_{I}^{m}$: Interface condition
 - Continuity of physical quantities
 - Conservation/continuity of other variables flow or gradients

Summary of existing methods for neural solver

	Method	Description	Representatives
Neural Solver	Loss Reweighting	Grad Norm	GradientPathologiesPINNs [43]
		NTK Reweighting	PINNsNTK [44]
		Variance Reweighting	Inverse-Dirichlet PINNs [45]
	Novel Optimization Targets	Numerical Differentiation	DGM [46], CAN-PINN [47], cvPINNs [48]
		Variantional Formulation	vPINN [49], hp-PINN [50], VarNet [51], WAN [52]
		Regularization	gPINNs [53], Sobolev Training [54]
	Novel Architectures	Adaptive Activation	LAAF-PINNs [55], [56], SReLU [57]
		Feature Preprocessing	Fourier Embedding [58], Prior Dictionary Embedding [59]
		Boundary Encoding	TFC-based [60], CENN [61], PFNN [62], HCNet [63]
		Sequential Architecture	PhyCRNet [64], PhyLSTM [65] AR-DenseED [66], HNN [67], HGN [68]
		Convolutional Architecture	PhyGeoNet [69], PhyCRNet [64], PPNN [70]
		Domain Decomposition	XPINNs [71], cPINNs [72], FBPINNs [73], Shukla et al. [74]
	Other Learning Paradigms	Transfer Learning	Desai et al. [75], MF-PIDNN [76]
		Meta-Learning	Psaros et al. [77], NRPINNs [78]

TABLE 2: An overview of variants of PINNs. Variants of PINNs include loss reweighting, novel optimization targets, novel architectures and other techniques such as meta-learning.

Neural Operator

• Learning an operator $\tilde{G} \colon \Theta \times \Omega \to \mathbb{R}^m$ $\min_{w \in W} \|G_w(\theta)(x) - \tilde{G}(\theta)(x)\|$

where $\theta \in \Theta$ is control/design parameters, G_w is the trained neural model.

Training dataset

- \Box Data points: $\{\tilde{G}(\theta_i)(\mathbf{x}_j)\}$
- \Box Collocation points: { (θ_i, \mathbf{x}_j) } (physics-informed loss)

Categories

Direct Methods, Green's Function learning, Grid-based Operator Learning, Graph-based Operator Learning.

Direct Methods

• Directly parameterize $\tilde{G}: \Theta \times \Omega \rightarrow \mathbb{R}^m$ as a neural network, following the format in *Universal Approximation Theorem of Operator*

Category & Formulation	Rrepresentative	Description
	DeepONet [153]	Parameterize b_k and t_k with neural networks, which are trained with supervised data.
Direct Methods	Physics-informed DeepONet	Train DeepONet with a combination of data and
	[154]	physics-informed losses.
$G_w(heta)(oldsymbol{x}) = b_0 + \sum_{k=1}^p b_k(heta) t_k(oldsymbol{x})$		Including modified network structures (see Eq. (99)),
	Improved Architectures	input transformation ($m{x}\mapsto(m{x},\sin(m{x}),\cos(m{x}),\dots)$),
	for DeepONet [155], [156]	POD-DeepONet (see Eq. (101)),
		and output transformation (see Eq. (102) and Eq. (103)).
	Multiple-input DeepONet	A variant of DeepONet taking multiple
		various parameters as input,
		i.e., $\tilde{G}: \Theta_1 \times \Theta_2 \times \cdots \times \Theta_n \to Y.$
	Pre-trained DeepONet for	Model a multi-physics system with several
	Multi-physics [158], [159]	pre-trained DeepONets serving as building blocks.
		Including Bayesian DeepONet [160],
	Other Variants	multi-fidelity DeepONet [161],
		and MultiAuto-DeepONet [162].

Green's Function learning

We are interested when
$$\theta$$
 is a *function* $(\tilde{G}: f \mapsto u)$
 $\mathcal{F}_L[u] = f, \quad x \in \Omega$
 $\mathcal{B}_L[u] = g, \quad x \in \partial \Omega$

where \mathcal{F}_L and \mathcal{B}_L are two linear operators

Represent the solution via Green's function

$$u(\mathbf{x}) = \int_{\Omega} \mathcal{G}(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y} + u_{\text{homo}}(\mathbf{x})$$

where $\mathcal{G}(\mathbf{x}, \mathbf{y})$ is parameterized by NN (double dimension)

Green's Function Learning	Methods for Linear Operators [163], [164]	Parameterize \mathcal{G} and u_{homo} with neural networks, which are trained with supervised data (and possibly physics-informed losses).
$G_w(\theta)(\boldsymbol{x}) = \int_{\Omega} \mathcal{G}(\boldsymbol{x}, \boldsymbol{y}) \theta(\boldsymbol{y}) \mathrm{d}\boldsymbol{y} + u_{\mathrm{homo}}(\boldsymbol{x}),$ where θ is a function $\theta = v(\boldsymbol{x})$	Methods for Nonlinear Operators [165]	Discretize the PDEs and use trainable mappings to linearize the target operator, where Green's function formula is subsequently applied to construct the approximation.

Grid/Graph-based Methods

Grid-based operator learning (image-to-image) $\tilde{G}: \{u(\boldsymbol{x}_i)\} \mapsto \{v(\boldsymbol{x}_i)\}$

Graph-based Methods (graph-to-graph) \tilde{G} : node features \mapsto node features

Grid-based Operator Learning $G_{-}(\theta) = \{u(m_{-})\}^{N}$ where $\{u(m_{-})\}^{N}$ and	Convolutional Neural Network [69], [166]	A convolutional neural network is utilized to approximate such an image-to-image mapping, where the loss function is based on supervised data (and possibly physics-informed losses).
$G_w(b) = \{u(x_i)\}_{i=1}^N$, where $\{u(x_i)\}_{i=1}^N$ and $\theta = \{v(x_i)\}_{i=1}^N$ are discretizations of input and output functions in some grids	Fourier Neural Operator [167]	Several Fourier convolutional kernels are incorporated into the network structure, to better learn the features in the frequency domain.
	Neural Operator with Attention Mechanism [168], [169], [170]	The attention mechanism is introduced to the design of the network structure, to improve the abstraction ability of the model.
Graph-based Operator Learning	Graph Kernel Network [171]	A graph kernel network is employed to learn such a graph-based mapping.
$G_w(\theta) = \{u(\boldsymbol{x}_i)\}_{i=1}^N$, where $\{u(\boldsymbol{x}_i)\}_{i=1}^N$ and $\theta = \{v(\boldsymbol{x}_i)\}_{i=1}^N$ are discretizations of input and	Multipole Graph Neural Operator [172]	The graph kernel is decomposed into several multi-level sub-kernels, to capture multi-level neighboring interactions.
output functions in some graphs	Graph Neural Opeartor with Autogressive Methods [173]	Extend graph neural operators to time-dependent PDEs.

Neural Operator

Open Challenges

- □ Incorporating physical priors
 - Generalizability↑, Data Demand↓
 - Close integration of physics knowledge and models, in addition to *physics-informed loss functions*
- □ Reducing the cost of gathering datasets (**major**)
 - Large design space Θ , complex geometry Ω
 - High cost of data generating
- □ Developing large pre-trained models
- □ Modeling real-world physical systems

Neural Operator

Open Challenges

- □ Incorporating physical priors
- □ Reducing the cost of gathering datasets (**major**)
- □ Developing large pre-trained models
 - Handle so many downstream tasks
 - A possible to reduce data cost and training overhead
- □ Modeling real-world physical systems
 - From idealized experiments to real-world ones
 - It may be helpful to borrow from the field of numerical computing
 - Efficiently employed in industrial scenarios, e.g., optimization, simulation, etc.

Theory in PIML

Error Estimation

Expression Ability

- It is well known that multi-layer neural networks are universal approximators, i.e., they can approximate any measurable function to arbitrary accuracy.
- A major concern in PIML is to approximate neural operator.
- One-layer neural networks can approximate any operators [16, 17]. (DeepONet)
- Next question: how many nodes do we need?
- Wide, shallow neural networks may need exponentially many neurons to obtain similar expression ability with deep, narrow ones [18].

Expression Ability

- [18] takes a first step for providing an upper bound of the width of the deeper neural networks for approximating operators.
- Future work:
- design more effective architecture to approximate operators with fewer nodes is significant for designing more stable and effective algorithms
- analyze the expression ability of other architectures

Convergence

evaluate the algorithm: whether it converges and its convergence speed

- combine optimization and PDEs
- current with little research: PINNs [19], neural operator
 [20], deep ritz methods [21]

Error Estimation

- There are different kinds of error: approximation error (the target loss), generalization error (generalize to unseen samples) ...
- [22] first analyzes the approximation error and generalization error of DeepONet

Theory in PIML

• Future work:

- design more effective architecture to approximate operators with fewer nodes is significant for designing more stable and effective algorithms
- analyze the expression ability of other architectures
- analyze the convergence of PINNs for different kinds of PDEs for designing more efficient architectures and algorithms

Inverse Problem (Inverse Design)

To optimize or discover unknown parameters of a physical system, including scientific discovery, shape optimization, optimal control, etc.

> $\min_{\theta \in \Theta} \mathcal{J}(u(\boldsymbol{x}; \theta), \theta),$ s.t. $\mathcal{P}(u; \theta)(\boldsymbol{x}) = 0.$

- Traditional methods
 - □ SQP, Adjoint PDE
 - □ infeasible in large-scale problems
 - □ heavy computational cost
 - non-differentiable physical process

Inverse Design

- Solving inverse design usually involves multiple steps
 - □ e.g., simulation, evaluation, configuration
- System Simulation & Evaluation
 - □ Neural Surrogates
 - □ PINN, Neural Operator, Neural Simulator
- Neural Representation
- Design Prediction
- Data Generation

Neural Surrogates

With PINN

• Directly extend PINN to inverse design[26] $\mathcal{L} = \lambda_p \mathcal{L}_{PINN} + \lambda_d \mathcal{J}$

□ imbalance training objectives

- PINN with hard constraints (h-PINN)[23]
 - imposing hard constraints with the penalty method and the augmented Lagrangian method
- Bi-level optimization framework[24]

$$egin{aligned} &\min_{ heta} & \mathcal{J}(w^*, heta) \ s.t. & w^* = rgmin_w \, \mathcal{L}_{PINN}(w, heta). \end{aligned}$$

Neural Surrogates

With Neural Operator

Trained differentiable neural operator predicting the state variables[25]

$$w^* = \operatorname*{arg\,min}_{w \in W} \mathcal{L}_{operator}, \ \min_{lpha} \mathcal{J}(G_{w^*}(heta_{lpha})(m{x}), heta_{lpha}),$$

□ using various models,e.g., DeepONet[27],Autoencoder[28] With Neural Simulators

Differentiable simulators mapping parameters to the values of interest to avoid numerical simulations[29]

Other Methods

Neural Representation

- parameterize the parameters/configurations with neural network to achieve more highly-detailed and continuous representations[30]
- Design Prediction
 - □ map the desired targets to the design parameters[31]
- Data Generation
 - □ generate novel samples with superior performance using generative models like VAE[32]

Open Problems and Challenges

Neural Surrogate Modeling

- balance of multiple loss terms and training convergence for physics-informed methods
- □ large demand of data for operator and simulator training
- Large Scale Application
 - potential challenges like curse of dimensions, computational complexity in large scale scenarios
- Other Directions
 - using neural networks in other steps of inverse design besides simulation

Computer Vision and Graphics

- Traditional Visual Tasks (Classification & Detection)
 - knowledge of symmetry, such as equivariance to rotation[33]
- Motion and Pose Analysis/Physical Scene Understanding
 - knowledge of mechanics and kinematics, such as motion constraints[34], Hamiltonian canonical equations[35]
- Computer graphics
 - knowledge of rendering, such as classical volume rendering equations[36]

Reinforcement Learning

Goal

to interact with an unknown world to maximize reward, with/without the learning of world models

Policy Training

use knowledge to design rewards for specific goals, such as adaptive mesh refinement[37]

Model Training

use knowledge to learn a better world model, such as equations of continuous dynamics[38]

Exploration Guiding

use knowledge to restrict exploration to safe regions, such as logical sandboxes[39]

Open Problems and Challenges

- Better Description of Physical World
 - □ to learn meaningful representations from visual observations
 - \Box to find formulated representations of intuitive physics
- Generic Modeling of Physical Tasks
 - to deal with new tasks from proper expert knowledge instead of case-by-case design
- Solving High-Dimensional Problems in RL
- Guaranteeing Safety in Complex, Uncertain Environments

Conclusions

- From methodological perspective
 - □ Standardized dataset
 - □ Better algorithms for inference and optimization
 - □ Scalable algorithms for intuitive physics in real world
- From tasks perspective
 - □ Better methods for neural simulation
 - □ Inverse problems
 - □ More applications in real world CV/RL

Thank you!

References

[1] DGM: A deep learning algorithm for solving partial differential equations

[2] The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems

[3] Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations

[4] Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators

[5] Fourier neural operator for parametric partial differential equations

[6] Amortized finite element analysis for fast pde-constrained optimization

[7] Understanding and mitigating gradient pathologies in physics-informed neural networks

[8] Efficient Training of Physics-Informed Neural Networks via Importance Sampling

[9] Variational physics-informed neural networks for solving partial differential equations

[10] Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems

[11] Neural-network methods for boundary value problems with irregular boundaries

[12] On the eigenvector bias of fourier feature networks: From regression to solving multi-scale pdes with physics-informed neural networks

[13] Adaptive activation functions accelerate convergence in deep and physics-informed neural networks

[14] PhyCRNet: Physics-informed convolutional-recurrent network for solving spatiotemporal PDEs

[15] Extended physics-informed neural networks (XPINNs) : A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equation

[16] Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems

[17] Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems

[18] Arbitrary-depth universal approximation theorems for operator neural networks

References

[19] On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs

- [20] Convergence rates for learning linear operators from noisy data
- [21] Uniform convergence guarantees for the deep Ritz method for nonlinear problems
- [22] Error estimates for deeponets: A deep learning framework in infinite dimensions
- [23] 31.Physics-informed neural networks with hard constraints for inverse design
- [24] Bi-level Physics-Informed Neural Networks for PDE Constrained Optimization using Broyden's

Hypergradients

- [25] Fast PDE-constrained optimization via self-supervised operator learning
- [26] Optimal control of pdes using physics-informed neural networks
- [27] Amortized synthesis of constrained configurations using a differentiable surrogate
- [28] Solving pde-constrained control problems using operator learning
- [29] Iterative surrogate model optimization (ismo): an active learning algorithm for pde constrained optimization with deep neural networks
- [30] Neural reparameterization improves structural optimization
- [31] Inverse design of airfoil using a deep convolutional neural network
- [32] Data-driven topology design using a deep generative model
- [33] Rotationally equivariant 3d object detection

[34] Physical inertial poser (pip): Physics-aware real-time human motion tracking from sparse inertial sensors,

- [35] Hamiltonian generative networks
- [36] Nerf: Representing scenes as neural radiance fields for view synthesis
- [37] Reinforcement learning for adaptive mesh refinement
- [38] Differentiable physics models for real-world offline model-based reinforcement learning
- [39] Safe reinforcement learning via formal methods: Toward safe control through proof and learning