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Introduction

 Limitations of Statistical ML models

 Not robust

 Lack interpretability

 Violate physical constraints

 Current statistic learning are not aware of the internal physical 

mechanism that generates the data
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Introduction

 Concept of Machine Learning

 build models that leverage empirical data to improve performance on 

some set of tasks

 Concept of Physics-Informed Machine Learning

 build models that leverage empirical data and available physical 

prior knowledge to improve performance on a set of tasks that 

involve a physical mechanism
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Introduction

 Representation of physical prior

 PDEs/ODEs/SDEs

 Symmetry

 Intuitive physics

 How to encode physical prior

 Data

 Architecture

 Loss functions

 Optimizer

 Inference
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Introduction

 Tasks of PIML

 Neural Simulation

 Neural Solver (PINN…)

 Neural Operator (DeepONet, FNO…)

 Inverse Problem

 Computer Vision/Computer Graphics

 Reinforcement Learning/Control
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Introduction

 Representative works

 Methods for incorporating physical prior (left)

 Works for solving different tasks (right)
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Problem Formulation

 Problem formulation

 View ML as an optimization problem

 The root of physical prior is data is physical

 Data

 Architecture

 Loss/Reg

 Optimization

 Inference

Survey on Physics-Informed Machine Learning2023/5/10



9

Neural Simulation

 Notations and Problem Formulation

 PDEs

 Neural Solver

 Neural Operator
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Neural Simulation

 Chronological overview

 Neural Solver: DGM[1]/DRM[2]/PINN[3]...

 Neural Operator: DeepONet[4]/FNO[5]… 

 Inverse Design: PINNs/DeepONets/AmorFEA[6]…
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Neural Solver

 Basic PINNs

 Parametrize solution with NNs and optimize following 

loss

 Graphical illustration of PINNs
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Neural Solver

 Variants of PINNs

 Loss Reweighting and Data Resampling

 Novel optimization targets

 Numerical Differentiation

 Variational Formulation

 Regularization terms

 Novel Neural Architectures

 Activation functions

 Feature preprocessing (embedding)

 Boundary Encoding

 Sequential Architecture/Convolutional Architecture

 Domain Decomposition
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Neural Solver

 Loss Reweighting

 Balance learning rates by gradient norms [7]

 NTK reweighting 

 Variance reweighting

 …

 Data Sampling

 Sample points with higher error with IS [8]
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Neural Solver

 Novel Optimization Targets--Variational Formulation

 For the following problem

 PINN optimizes

 Deep Ritz Method [2] optimizes

 VPINNs [9] choose a set of test functions
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Neural Solver

 Novel Optimization Targets—Regularization terms

 Gradient-enhanced PINNs [10]

 For PDEs, we penalize itself as well as its derivatives

 Loss function of gPINNs
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Neural Solver

 Novel Architectures

 Boundary encoding [11] (use hard boundary constraints)

 Feature Embedding [12] (e.g. Fourier features)

 Adaptive activation functions [13]…

Survey on Physics-Informed Machine Learning2023/5/10



17

Neural Solver

 Novel Architectures

 Sequential Architectures [14]

 Solves time-dependent PDEs and uses LSTM architectures

 Convolutional Architectures [14]

 Replace spatial differentiation with numerical ones and use CNNs
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Neural Solver

 Novel Architectures—Domain Decomposition

 XPINNs [15]: use 𝐾 subnets for 𝐾 subdomains

 Loss functions:

 : Interface condition

 Continuity of physical quantities

 Conservation/continuity of 

other variables flow or gradients
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Neural Solver

 Summary of existing methods for neural solver
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Neural Operator

 Learning an operator ෨𝐺: Θ × Ω → ℝ𝑚

min
𝑤∈𝑊

𝐺𝑤 𝜃 𝒙 − ෨𝐺(𝜃)(𝒙)

where 𝜃 ∈ Θ is control/design parameters, 𝐺𝑤 is the trained 

neural model.

 Training dataset

 Data points: ෨𝐺 𝜃𝑖 𝒙𝑗

 Collocation points: 𝜃𝑖 , 𝒙𝑗 (physics-informed loss)

 Categories

 Direct Methods, Green’s Function learning, Grid-based 

Operator Learning, Graph-based Operator Learning.
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Direct Methods

 Directly parameterize ෨𝐺: Θ × Ω → ℝ𝑚 as a neural 

network, following the format in Universal 

Approximation Theorem of Operator
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Green’s Function learning

 We are interested when 𝜃 is a function ( ෨𝐺: 𝑓 ↦ 𝑢)

ℱ𝐿 𝑢 = 𝑓, 𝒙 ∈ Ω
ℬ𝐿 𝑢 = 𝑔, 𝒙 ∈ 𝜕Ω

where ℱ𝐿 and ℬ𝐿 are two linear operators

 Represent the solution via Green’s function

𝑢 𝒙 = න
Ω

𝒢 𝒙, 𝒚 𝑓 𝒚 𝑑𝒚 + 𝑢homo 𝑥

where 𝒢 𝒙, 𝒚 is parameterized by NN (double dimension)
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Grid/Graph-based Methods

 Grid-based operator learning (image-to-image)
෨𝐺: 𝑢 𝒙𝑖 ↦ 𝑣 𝒙𝑖

 Graph-based Methods (graph-to-graph)
෨𝐺: node features ↦ node features
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Neural Operator

 Open Challenges

 Incorporating physical priors

 Generalizability↑, Data Demand↓

 Close integration of physics knowledge and models,

in addition to physics-informed loss functions

 Reducing the cost of gathering datasets (major)

 Large design space Θ, complex geometry Ω

 High cost of data generating

 Developing large pre-trained models

 Modeling real-world physical systems
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Neural Operator

 Open Challenges

 Incorporating physical priors

 Reducing the cost of gathering datasets (major)

 Developing large pre-trained models

 Handle so many downstream tasks

 A possible to reduce data cost and training overhead

 Modeling real-world physical systems

 From idealized experiments  to real-world ones

 It may be helpful to borrow from the field of numerical computing

 Efficiently employed in industrial scenarios, e.g., optimization, 

simulation, etc.
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Theory in PIML

2022/12/15

ConvergenceExpression Ability

Error Estimation
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Expression Ability

2022/12/15

 It is well known that multi-layer neural networks are universal 

approximators, i.e., they can approximate any measurable function to 

arbitrary accuracy.

 A major concern in PIML is to approximate neural operator.

 One-layer neural networks can approximate any operators [16, 17]. 

(DeepONet)

 Next question: how many nodes do we need?

 Wide, shallow neural networks may need exponentially many neurons to 

obtain similar expression ability with deep, narrow ones [18].
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Expression Ability

2022/12/15

 [18] takes a first step for providing an upper bound of the width of the 

deeper neural networks for approximating operators.

 Future work: 

 design more effective architecture to approximate operators with fewer 

nodes is significant for designing more stable and effective algorithms

 analyze the expression ability of other architectures
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Convergence

2022/12/15

 evaluate the algorithm: whether it converges and its 

convergence speed

 combine optimization and PDEs

 current with little research: PINNs [19], neural operator 

[20], deep ritz methods [21]
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Error Estimation

2022/12/15

 There are different kinds of error: approximation error (the target loss), 

generalization error (generalize to unseen samples) ... 

 [22] first analyzes the approximation error and generalization error of 

DeepONet
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Theory in PIML

2022/12/15

 Future work: 

 design more effective architecture to approximate operators with fewer 

nodes is significant for designing more stable and effective algorithms

 analyze the expression ability of other architectures

 analyze the convergence of PINNs for different kinds of PDEs for 

designing more efficient architectures and algorithms
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Inverse Problem (Inverse Design)

 To optimize or discover unknown parameters of a 

physical system, including scientific discovery, shape 

optimization, optimal control, etc.

 Traditional methods

 SQP, Adjoint PDE

 infeasible in large-scale problems

 heavy computational cost

 non-differentiable physical process
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Inverse Design

 Solving inverse design usually involves multiple steps

 e.g., simulation, evaluation, configuration

 System Simulation & Evaluation

 Neural Surrogates

 PINN, Neural Operator, Neural Simulator

 Neural Representation

 Design Prediction

 Data Generation

 …
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Neural Surrogates

With PINN

 Directly extend PINN to inverse design[26]

ℒ = 𝜆𝑝ℒ𝑃𝐼𝑁𝑁 + 𝜆𝑑𝒥

 imbalance training objectives

 PINN with hard constraints (h-PINN)[23]

 imposing hard constraints with the penalty method and the 

augmented Lagrangian method

 Bi-level optimization framework[24]
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Neural Surrogates

With Neural Operator

 Trained differentiable neural operator predicting the 

state variables[25]

 using various models,e.g., DeepONet[27],Autoencoder[28]

With Neural Simulators

 Differentiable simulators mapping parameters to the 

values of interest to avoid numerical simulations[29]
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Other Methods

 Neural Representation

 parameterize the parameters/configurations with neural 

network to achieve more highly-detailed and continuous 

representations[30]

 Design Prediction

 map the desired targets to the design parameters[31]

 Data Generation

 generate novel samples with superior performance using 

generative models like VAE[32]
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Open Problems and Challenges

 Neural Surrogate Modeling

 balance of multiple loss terms and training convergence 

for physics-informed methods

 large demand of data for operator and simulator training

 Large Scale Application

 potential challenges like curse of dimensions, 

computational complexity in large scale scenarios

 Other Directions

 using neural networks in other steps of inverse design 

besides simulation
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Computer Vision and Graphics

 Traditional Visual Tasks (Classification & Detection)

 knowledge of symmetry, such as equivariance to 

rotation[33]

 Motion and Pose Analysis/Physical Scene Understanding

 knowledge of mechanics and kinematics, such as motion 

constraints[34], Hamiltonian canonical equations[35]

 Computer graphics

 knowledge of rendering, such as classical volume 

rendering equations[36]
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Reinforcement Learning

 Goal

 to interact with an unknown world to maximize reward, 

with/without the learning of world models

 Policy Training

 use knowledge to design rewards for specific goals, such 

as adaptive mesh refinement[37]

 Model Training

 use knowledge to learn a better world model, such as 

equations of continuous dynamics[38]

 Exploration Guiding

 use knowledge to restrict exploration to safe regions, such 

as logical sandboxes[39]
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Open Problems and Challenges

 Better Description of Physical World

 to learn meaningful representations from visual observations

 to find formulated representations of intuitive physics

 Generic Modeling of Physical Tasks

 to deal with new tasks from proper expert knowledge 

instead of case-by-case design

 Solving High-Dimensional Problems in RL

 Guaranteeing Safety in Complex, Uncertain Environments
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Conclusions

 Open challenges

 From methodological perspective

 Standardized dataset

 Better algorithms for inference and optimization

 Scalable algorithms for intuitive physics in real world

 From tasks perspective

 Better methods for neural simulation

 Inverse problems

 More applications in real world CV/RL
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Thank you!
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