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Some knowledge about physical systems

• Algebraic equations – kinematics, some stable or simple systems, graphics

• Dynamical systems– kinematics, population in bio

• ODE or ODEs— systems of mass points, rigid body, Hamilton systems

• PDE or PDEs— fields, Electric-Magnetic fields, fluid fields, quantum chemistry

• Statistical systems—systems with uncertainty

3Dynamical systems ODE systems PDE systems



Motivation for combing physics and machine learning

• Physics as (inductive) biases for better machine learning models

like CNN, RNN compared with MLP

• Use neural networks to solve physical systems (PINN) 

• Use machine learning to estimate parameters or physical laws 

• Explore connections between NN architectures and physics (NeuralODE/ Mean field theory for NN)
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How to embed physics in ML

• Observational biases (use sufficient data with augmentation to fit a model)

• Inductive biases (specialized NN to embed some prior knowledge)

• Learning biases (use loss as constraint)

• Hybrid approaches(finding physical laws, combine with numeric methods)
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Observational biases

• Main idea– Learns from big data, collect or augment data using symmetry

• CNN for image recognition

• CT image recognition

• Material property prediction

• MPNN for molecular property prediction
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Inductive biases

• Main idea– specialized NN architectures to embed prior knowledge

• Limitations– based on well-defined physics or symmetry groups

Fitting data (forward problems)

• CNN  and more general CNN– translation/rotation/gauge symmetry invariance/equivariance

• GNN– permutation invariance/equivariance

• DTNN/SchNet—spatial translation/rotation invariance

Fitting system parameters (inverse problems)
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Inductive biases

• Convolutional NN/ Graph NN/PointNet

• GNN: message passing for permutation invariant while considering local connections

• PointNet: global pooling for permutation invariant

• Gauge equivalent NN on mainfolds

• SympNets– learns systems that preserves symplectic mappings

8



Inductive biases

• Lax-Oleinik Formula

• Some NN are natural solutions of Hamilton-Jacobi equations

• This motivate us to find other cases that NN 

are solutions of PDE.
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Learning biases

• Main idea—add regularization terms to loss function

• Examples

• Deep Galerkin Methods

• PINN(physics informed neural networks)

• InvNet(use a invariance checker network in GAN to keep invariance)

• ContactNet(use a special parameterization to deal with discontinuity in contact)

• Use Bayesian networks for uncertainty quantification

• Add penalty to enforce Lyapunov stability
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Deep Galerkin Methods

• Consider the PDE below

• We use a network 𝑓(𝑡, 𝑥; 𝜃) to approximate the solution and use this loss to optimize it

• When the dimension is large, we use Monte-Carlo sampling to estimate the integral

• Then

https://arxiv.org/pdf/1708.07469.pdf
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Physics informed neural networks

• Main idea – use regularization to solve the PDE/ODE

• A flexible framework to handle both data and prior knowledge

https://www.seas.upenn.edu/~cis522/slides/CIS522_Lecture
11T.pdf
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Uncertainty Quantification of PINN

• Use multi-step method for learning physics constraints

• Use SWAG for sampling posterior , in SWAG
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Hybrid Approaches

• DeepONet for operator learning

• Learning unknown physics (e.g. constitutive laws for  non-Newtonian fluids)

• Embed numerical method into a NN

• FermiNet that parameterized wavefunction obey Fermi-Dirac statistics

• Graph Operator Networks that incorporates graphs to model particle interactions
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DeepONet

• Learning operator from data

• Input: a datasets of functions 𝑓，probe points 𝑦, output 𝐺(𝑢)(𝑦)

• Examples:
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Connections to numerical methods

• Main idea—Some NN architectures can be viewed as numerical methods

• PDE-Net—Convolutional (NN) are finite differential stencils of PDE discretizations

• ResNet—Euler discretization for some ODE

• NeuralODE—bridge NN and ODE
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PDE-Net—Convolution as numeric differentiation discretization (ICML’18)

• Numerical diff operator equals to convolutional filter

• Train 𝐹(. ) to fit the data 
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Neural ODE (NeurIPS 18)

18

• ResNet architecture

• NeuralODE architecture

• T parameters are reduced to 1

• To optimize NODE, the backpropagation is also an ODE 



Data driven discovery of governing equations (PNAS19)

• Finding terms of ODE for physical systems

• Use an auto-encoder architecture from data to data

• Use L1- regularization term to discovery dynamic terms

19



Advantages

• Incomplete/ imperfect data, mesh free

• High dimensionality

• Stronger generalization with small data

• Uncertainty quantification

• Understanding deep learning from physics perspective
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Applications highlights

• Flow over espresso cup

• 4D flow MRI data

• Uncovering edge plasma dynamics from partial observations

• Studying transitions between metastable states of a distribution

• Thermodynamically consistent PINNs

• Quantum chemistry and  molecular simulation

• Material Science

• Geographics
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Applications– Flow over espresso cup

• Input: cameras recording the distortion of 

dot-patterns caused by air density variation

• Processing: Derive 3D temperature field

• Learning: use PINN to recover the velocity and 

pressure fields

• PINN details: use space and time coordinates as input , output the velocity and pressure fields, trained 
by minimizing temperature loss and conservation loss
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Applications—4D MRI data

• Use PINN that obeys NS equation to reconstruct the velocity and pressure fields
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Applications—Uncovering edge plasma dynamics

• Learn the electric potential and field from single test discharge using PINN
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Thermodynamically consistent PINN

• For PDE

• Traditional PINN loss function

• Problems—in hyperbolic settings

• The authors define a extended flux, use a single loss to solve the PDE

• Control Volume PINN
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Applications—Quantum Chemistry and Molecular Simulations

• Traditional levels of molecular simulation

• Combine phys and ML

• Data driven – use data to fit patterns (DTNN,SchNet)

• Physics driven—use NN to solve (DP, FermiNet)

• Generative Models 

DTNN Deep Potential
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Applications—Material Science and Geoscience

• Different from molecular simulation—Some tasks involve more complex data (e.g. visual)

• Identify and precisely characterize a surface breaking crack in a metal plate 

• Extracting mechanical properties of 3D-printed materials via instrumented indentation using multi-
fidelity NN

• estimates subsurface properties, such as rock permeability and porosity, from seismic data by coupling 
NNs

• Combine NN and numerical solver for a wide class of

seismic inversion problems, such as velocity estimation, 

earthquake location retrieval.

• More applications on material property prediction
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Precipitation nowcasting using GAN (Nature)

• Using a GAN to fit a generative model for precipitation data

• Model formulation

• Objective function
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Limitations

• Difficulty in learning high frequency functions /F-principle, multiscale problems

• Algorithms and architectures limitations/ complex loss, unstable training, activation function

• Benchmarks , datasets and metrics/ data collection, for phys and chem

• No theoretical framework for PINN(like error/ well-posedness/training analysis)

• Code platforms, PINN requires higher/fractional order derivatives, scalable algo for large scale problem
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Software

• PINN code platforms

• Related code platforms—DeepPMD-kit, Taichi,  DGL model zoo(MPNN, SchNet) 

• Recommend libs—DeepXDE
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Future directions

• Digital twins/ a concept first to describe the digital copy of an engine manufactured in their factories, 
by assimilating real measurements to calibrate computational models, a digital twin aims to replicate 
the behavior of a living or non-living physical entity in silico (sim2real, real2sim?)

• Fusion/transformation/interpretations between models

• Searching for intrinsic variables, representations
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Strengths of ML and Phys

Machin Learning

• Data Driven

• Deep Neural Networks 

• Optimization toolkits

Physics

• Principle equation

• Numerical/ Analytical solver

• Empirical laws or structural laws for systems
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