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Introduction

= A
m Limitations of Statistical ML models

Not robust
Lack interpretability

Violate physical constraints

m Current statistic learning are not aware of the internal physical
mechanism that generates the data
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Introduction

m Concept of Machine Learning

build models that leverage empirical data to improve performance on
some set of tasks

m Concept of Physics-Informed Machine Learning

build models that leverage empirical data and available physical
prior knowledge to improve performance on a set of tasks that
Involve a physical mechanism
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Introduction
=

m Representation of physical prior
1 PDEs/ODEs/SDEs
1 Symmetry
T Intuitive physics

m How to encode physical prior
-1 Data
1 Architecture
1 Loss functions
~1 Optimizer
1 Inference
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Introduction
=
m Tasks of PIML

1 Neural Simulation
m Neural Solver (PINN...)
m Neural Operator (DeepONet, FNO...)

1 Inverse Problem
1 Computer Vision/Computer Graphics
1 Reinforcement Learning/Control
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Introduction

m Representative works
Methods for incorporating physical prior (left)
Works for solving different tasks (right)

Inference
PIP RL/Control Dot
(Yiet.al) (Lutter et. al.)
T PIP
Optimization o
CV/CG ’
HGN PointNet N
(Tothet. al)) (Qiet.al) (Battaglia et. al)
Loss function PhylR
(Liet al)
Inverse
. Problem
PINN
Architecture (Raissi et al) HRN ]
(Greydanus et_al)
NeuralODE (Battaglia et. al)
Chen et al DeepONet
(Chenet ) GNN Neural (Luet al)
Data DespONer (Kipfet al) Simulation PINN -
(Luet.al) (Raissi et. al.) (Sanchez et. al)
D
. PDEs ODEs/SDEs ~ Symmetry Intuitive Physics . PDEs ODEs/SDEs ~ Symmetry Intuitive Physics
Strong Prior Week Prior Strong Prior i Week Prior
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Problem Formulation
= A
m Problem formulation
View ML as an optimization problem

min £(f; D) + Q(f; D).

m The root of physical prior is data is physical

F(D) =0,
Data Dy = P(D)
Architecture f e, C .
Loss/Reg L,(f;D) or Q,(f; D)
Optimization OPT,
Inference gp(z, f(x))
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Neural Simulation
= A
m Notations and Problem Formulation
PDEs

du ou Pu  9u O*u
F (u, a:[,’l g a_j[:d’ al%, aCL'laIQ you- 69:?1 ..... 9) (Iz,t) - 09
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Neural Solver

min [juy (z) - a(@)],

Neural Operator

min ||G,,(0)(z) — G(0)(z)|.

weW
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Neural Simulation
= N
m Chronological overview
Neural Solver: DGM[1]/DRM[2]/PINNI[3]...
Neural Operator: DeepONet[4]/FNOJ[5]...
Inverse Design: PINNs/DeepONets/AmorFEA[6]...

\\\\\\\\ hp PhyGeo! N N N N
( ) )(Khar harazmi
A A A A A
) Q= @) ‘ e () @ 2 >
1998 2017 2018 2019 2020 2021 2022
mmmm Neural Solver
s Neural Operator
v \ 4 \ 4 4 \ 4
mmm— [nverse PrOblcm DeepONet Neural Operator ~ AmorFEA FNO DeepM&MNe DeepGreen hPINN: (PI-)DeepONet  Galerkin Transformer MWT LOCA Bi-level PINN:
(Lu et. al) Liet. et. al Liet.al) (Caiet.al) Ginet. al.)(Lu et. al.)(Wang et. al., Hwang et. al.) (Caoet.al) (Gupta et al) (Ki t.al) (Haoet.al)
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Neural Solver

=
m Basic PINNSs
Parametrize solution with NNs and optimize following

loss
2 2
|Q|f | (s 0) (@) d:c+—|QU|f 12 (; 0) ()| da
b _ 12
+laﬂl | 1Bt ) @) e + 5 Znuw ) - u(a) P,

_________________________

__________________________

i(z,t) — gp(z,t) "_’CEMS

¥ - :777
’: g_Z(w’t)_gR(u:x:t) | >

wi = fo(@)P+  RIa(@)
i S——

Physics regularization

g

Data fit
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Neural Solver

m Variants of PINNs

Loss Reweighting and Data Resampling

Novel optimization targets
= Numerical Differentiation
m Variational Formulation
m Regularization terms
Novel Neural Architectures
m Activation functions
m Feature preprocessing (embedding)
= Boundary Encoding
m Sequential Architecture/Convolutional Architecture
m Domain Decomposition
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Neural Solver

=
m Loss Reweighting
Balance learning rates by gradient norms [7]

_ max{vwﬁr(wn)}'
[VwLi(wn)|

A — (1 — Oz)/\i + &ii,

NTK reweighting
Variance reweighting

m Data Sampling
Sample points with higher error with IS [8]

L0 = Bany | B IF @)

Ve L)
1) = STl (o)~ 5w ay)
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Neural Solver

= oA
m Novel Optimization Targets--Variational Formulation
For the following problem

Au = f(x),z € Q,
Ju
o 0,z € 9.
PINN optimizes
)\ )\b auw ?

L(w) = ||Auw f(x)|?de + =~ dx

|S2| |3Q| a0 872,

Deep Ritz Method [2] optimizes

7w = [ (5IVun(@P - f(@)un (@) ) de
VPINNSs [9] choose a set of test functions

Z| (1), v}l + X0 7 Z\uw(ﬂ? ;)|
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Neural Solver

= N

m Novel Optimization Targets—Regularization terms
Gradient-enhanced PINNSs [10]

For PDEs, we penalize itself as well as its derivatives

f( ou ou  O%u 0%u

"Oxy’ T Oxg Ox10xy T Ox0xg’ ]

)\) =0, x=(x1, - ,2q) €,

Loss function of gPINNS

d
L= wfﬁf + wp Ly + wi L; + ngiﬁgi (957—97:) ;

=1
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Neural Solver

= S
m Novel Architectures
Boundary encoding [11] (use hard boundary constraints)

Flu)(x) = 0,z €, wlx) = v
(II‘)(}L) ! kS — u(x) = v(x) + D(x)y(x).
u@) = glx),z €N D(x) = 0,z € 0.

Feature Embedding [12] (e.g. Fourier features)

v(z) = (sin(27b! - x), cos(2nbT - x),.. .,

sin(27b? - x), cos(2mbl - x)).

m m

Adaptive activation functions [13]...
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Neural Solver
= A
m Novel Architectures

Sequential Architectures [14]
m Solves time-dependent PDEs and uses LSTM architectures

Uit1 — Uj P Ou; Ju p
Uy — e — .,
At dxq Org

Convolutional Architectures [14]
m Replace spatial differentiation with numerical ones and use CNNs

2

B ‘

——) Au(z,y) ~ Do U
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Neural Solver

= oA
m Novel Architectures—Domain Decomposition

XPINNSs [15]: use K subnets for K subdomains
Loss functions:

K M
L= (NELE+ ML+ ML)+ > ATLT
k=1 m=1

U=V, U ]

] PDE+BC+IC
+ Interface Loss

L7+ Interface condition

= Continuity of physical quantities

= Conservation/continuity of
other variables flow or gradients
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Neural Solver

=B
m Summary of existing methods for neural solver

Neural Solver

Method Description Representatives
Grad Norm GradientPathologiesPINNs [43]
Loss Reweighting NTK Reweighting PINNsNTK [44]

Variance Reweighting

Inverse-Dirichlet PINNs [45]

Novel Optimization Targets

Numerical Differentiation
Variantional Formulation
Regularization

DGM [46], CAN-PINN [47], cvPINNSs [48]
vPINN [49], hp-PINN [50], VarNet [51], WAN [52]
gPINNSs [53], Sobolev Training [54]

Novel Architectures

Adaptive Activation
Feature Preprocessing
Boundary Encoding
Sequential Architecture
Convolutional Architecture
Domain Decomposition

LAAEF-PINNSs [55], [56], SReLU [57]

Fourier Embedding [58], Prior Dictionary Embedding [59]
TFC-based [60], CENN [61], PENN [62], HCNet [63]
PhyCRNet [64], PhyLSTM [65] AR-DenseED [66], HNN [67], HGN [68]
PhyGeoNet [69], PhyCRNet [64], PPNN [70]

XPINNS [71], cPINNSs [72], FBPINNS [73], Shukla et al. [74]

Other Learning Paradigms

Transfer Learning
Meta-Learning

Desai et al. [75], MF-PIDNN [76]
Psaros et al. [77], NRPINNSs [78]

TABLE 2: An overview of variants of PINNs. Variants of PINNs include loss reweighting, novel optimization targets, novel
architectures and other techniques such as meta-learning.
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Neural Operator

m Learning an operator G: © x Q - R™
vrgleilg}||Gw(9)(x) —- GO

where 8 € 0 Is control/design parameters, G,, IS the trained
neural model.

m Training dataset
Data points: {G (6;)(x;)}
Collocation points: {(6;, x;)} (physics-informed loss)

m Categories

Direct Methods, Green’s Function learning, Grid-based
Operator Learning, Graph-based Operator Learning.
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Direct Methods

m Directly parameterize G: ©® x Q — R™ as a neural
network, following the format in Universal
Approximation Theorem of Operator

Category & Formulation

Rrepresentative

Description

Direct Methods

Guw(0)(x) = by + Zf,_l b (0)ty ()

DeepONet [153]

Parameterize b;. and ;. with neural networks,
which are trained with supervised data.

Physics-informed DeepONet
[154]

Train DeepONet with a combination of data and
physics-informed losses.

Improved Architectures
for DeepONet [155], [156]

Including modified network structures (see Eq. (99)),
input transformation (x — (x, sin(x), cos(x), ...)),
POD-DeepONet (see Eq. (101)),

and output transformation (see Eq. (102) and Eq. (103)).

Multiple-input DeepONet
[157]

A variant of DeepONet taking multiple
various parameters as input,

ie,G:O1 xO2x---XxO, =Y.

Pre-trained DeepONet for
Multi-physics [158], [159]

Model a multi-physics system with several
pre-trained DeepONets serving as building blocks.

Other Variants

Including Bayesian DeepONet [160],
multi-fidelity DeepONet [161],
and MultiAuto-DeepONet [162].

2023/5/10
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Green’s Function learning

m We are interested when 6 is a function (G: f ~ u)
TL [u] — f, X € ()
B, lu] = g, x € 01}

where F; and B; are two linear operators

m Represent the solution via Green’s function
u() = | G YF )Y + tnomo )
Q

where G(x, y) is parameterized by NN (double dimension)

Parameterize G and upomo with neural networks,
which are trained with supervised data
(and possibly physics-informed losses).

Methods for

Greenis Function Leaming Linear Operators [163], [164]

Guw(0) () = [, G(x,y)0(y)dy + Uhomo (), Discretize the PDEs and use trainable mappings
where 0 is a function 0 = v(x) Methods for to linearize the target operator,
Nonlinear Operators [165] where Green’s function formula is subsequently

applied to construct the approximation.
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Grid/Graph-based Methods

m Grid-based operator learning (image-to-image)

G:{u(x)} - {v(x;)}

m Graph-based Methods (graph-to-graph)
G: node features ~ node features

Grid-based Operator Learning

Guw(0) = {u(mi)}fvzl, where {u(:ci)};.'\’:1 and
0 = {v(x;)}Y , are discretizations of input and

output functions in some grids

Convolutional
Neural Network [69], [166]

A convolutional neural network is utilized to
approximate such an image-to-image mapping,
where the loss function is based on supervised
data (and possibly physics-informed losses).

Fourier Neural Operator
[167]

Several Fourier convolutional kernels are
incorporated into the network structure,
to better learn the features in the frequency domain.

Neural Operator with
Attention Mechanism
[168], [169], [170]

The attention mechanism is introduced to
the design of the network structure,
to improve the abstraction ability of the model.

Graph-based Operator Learning
Gyw(0) = {u(:z:,-)}fv_l, where {u,(a:,-)};f\’_1 and

0 = {v(x;) }fv_l are discretizations of input and
output functions in some graphs

Graph Kernel Network [171]

A graph kernel network is employed to
learn such a graph-based mapping.

Multipole Graph
Neural Operator [172]

The graph kernel is decomposed into
several multi-level sub-kernels,
to capture multi-level neighboring interactions.

Graph Neural Opeartor with
Autogressive Methods [173]

Extend graph neural operators to time-dependent PDEs.

2023/5/10
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Neural Operator

m Open Challenges

Incorporating physical priors
m GeneralizabilityT, Data Demandl
m Close integration of physics knowledge and models,
In addition to physics-informed loss functions

Reducing the cost of gathering datasets (major)
m Large design space O, complex geometry ()
= High cost of data generating

Developing large pre-trained models
Modeling real-world physical systems
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Neural Operator

m Open Challenges
Incorporating physical priors
Reducing the cost of gathering datasets (major)
Developing large pre-trained models

= Handle so many downstream tasks
m A possible to reduce data cost and training overhead

Modeling real-world physical systems
m From idealized experiments to real-world ones
m It may be helpful to borrow from the field of numerical computing

m Efficiently employed in industrial scenarios, e.g., optimization,
simulation, etc.
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“Theory In PIML
" I

Expression Ability Convergence

\/

labeled data algorithm prior knowledge

v

training sample A(O) features

0) parameter
' selection

validation data

v

test sample ,
evaluation

Error Estimation
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Expression Ability

m [tis well known that multi-layer neural networks are universal
approximators, I.e., they can approximate any measurable function to
arbitrary accuracy.

m A major concern in PIML is to approximate neural operator.

m  One-layer neural networks can approximate any operators [16, 17].
(DeepONet)

m Next question: how many nodes do we need?

m Wide, shallow neural networks may need exponentially many neurons to
obtain similar expression ability with deep, narrow ones [18].
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Expression Ability

m [18] takes a first step for providing an upper bound of the width of the
deeper neural networks for approximating operators.

m Future work:

m design more effective architecture to approximate operators with fewer
nodes is significant for designing more stable and effective algorithms

m analyze the expression ability of other architectures
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Convergence

m evaluate the algorithm: whether it converges and its
convergence speed

m combine optimization and PDEs

m current with little research: PINNSs [19], neural operator
[20], deep ritz methods [21]
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Error Estimation

m There are different kinds of error: approximation error (the target loss),
generalization error (generalize to unseen samples) ...

m [22] first analyzes the approximation error and generalization error of
DeepONet

G

X——Y

Encoding g i R Reconstruction ,
u = {u(x)}i ' Bz = ToW) + X, Br)Ti(y)

R™ ~~rrmm~~p RP

qQ
Approximation
(@), = {Br)i—y
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Theory in PIML

m Future work:

m design more effective architecture to approximate operators with fewer
nodes is significant for designing more stable and effective algorithms

m analyze the expression ability of other architectures

m analyze the convergence of PINNs for different kinds of PDEs for
designing more efficient architectures and algorithms
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Inverse Problem (Inverse Design)
=
m To optimize or discover unknown parameters of a

physical system, including scientific discovery, shape
optimization, optimal control, etc.

min J (u(; 0), 0),

s.t. P(u;0)(x) = 0.
m Traditional methods
SQP, Adjoint PDE
Infeasible in large-scale problems
heavy computational cost
non-differentiable physical process
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Inverse Design

= oA
m Solving inverse design usually involves multiple steps
e.g., simulation, evaluation, configuration

m System Simulation & Evaluation
Neural Surrogates
PINN, Neural Operator, Neural Simulator

Neural Representation
Design Prediction
Data Generation

2023/5/10 Survey on Physics-Informed Machine Learning 33




Neural Surrogates

= S
With PINN
m Directly extend PINN to inverse design[26]
L=ALpiyn + Agd
Imbalance training objectives

m PINN with hard constraints (h-PINN)[23]

Imposing hard constraints with the penalty method and the
augmented Lagrangian method

m Bi-level optimization framework[24]
mﬁin J(w™,0)
s.t. w" = argmin,, Lprnn(w, ).
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Neural Surrogates

= oA
With Neural Operator

m Trained differentiable neural operator predicting the
state variables[25]

* .
’LU — arg mln £Operatofr’
weW

min J (G- (0a) (), 0a),

using various models,e.g., DeepONet[27],Autoencoder[28]
With Neural Simulators

m Differentiable simulators mapping parameters to the
values of interest to avoid numerical simulations|[29]
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Other Methods

m Neural Representation

parameterize the parameters/configurations with neural
network to achieve more highly-detailed and continuous
representations[30]

m Design Prediction
map the desired targets to the design parameters|[31]
m Data Generation

generate novel samples with superior performance using
generative models like VAE[32]
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Open Problems and Challenges

m Neural Surrogate Modeling

balance of multiple loss terms and training convergence
for physics-informed methods

large demand of data for operator and simulator training
m Large Scale Application

potential challenges like curse of dimensions,
computational complexity in large scale scenarios

m Other Directions

using neural networks in other steps of inverse design
besides simulation
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Computer Vision and Graphics

m Traditional Visual Tasks (Classification & Detection)

knowledge of symmetry, such as equivariance to
rotation[33]

m Motion and Pose Analysis/Physical Scene Understanding

knowledge of mechanics and kinematics, such as motion
constraints[34], Hamiltonian canonical equations[35]

m Computer graphics

knowledge of rendering, such as classical volume
rendering equations[36]
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Reinforcement Learning
= oA
m Goal

to interact with an unknown world to maximize reward,
with/without the learning of world models

m Policy Training

use knowledge to design rewards for specific goals, such
as adaptive mesh refinement[37]

m Model Training

use knowledge to learn a better world model, such as
equations of continuous dynamics[38]

m Exploration Guiding

use knowledge to restrict exploration to safe regions, such
as logical sandboxes[39]
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Open Problems and Challenges

m Better Description of Physical World
to learn meaningful representations from visual observations
to find formulated representations of intuitive physics

m Generic Modeling of Physical Tasks

to deal with new tasks from proper expert knowledge
Instead of case-by-case design

m Solving High-Dimensional Problems in RL
m Guaranteeing Safety in Complex, Uncertain Environments
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Conclusions
=
m Open challenges
m From methodological perspective
Standardized dataset
Better algorithms for inference and optimization
Scalable algorithms for intuitive physics in real world
m From tasks perspective
Better methods for neural simulation
Inverse problems
More applications in real world CV/RL
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