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Introduction

 Limitations of Statistical ML models

 Not robust

 Lack interpretability

 Violate physical constraints

 Current statistic learning are not aware of the internal physical 

mechanism that generates the data
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Introduction

 Concept of Machine Learning

 build models that leverage empirical data to improve performance on 

some set of tasks

 Concept of Physics-Informed Machine Learning

 build models that leverage empirical data and available physical 

prior knowledge to improve performance on a set of tasks that 

involve a physical mechanism

Survey on Physics-Informed Machine Learning2023/5/10



5

Introduction

 Representation of physical prior

 PDEs/ODEs/SDEs

 Symmetry

 Intuitive physics

 How to encode physical prior

 Data

 Architecture

 Loss functions

 Optimizer

 Inference
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Introduction

 Tasks of PIML

 Neural Simulation

 Neural Solver (PINN…)

 Neural Operator (DeepONet, FNO…)

 Inverse Problem

 Computer Vision/Computer Graphics

 Reinforcement Learning/Control
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Introduction

 Representative works

 Methods for incorporating physical prior (left)

 Works for solving different tasks (right)
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Problem Formulation

 Problem formulation

 View ML as an optimization problem

 The root of physical prior is data is physical

 Data

 Architecture

 Loss/Reg

 Optimization

 Inference
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Neural Simulation

 Notations and Problem Formulation

 PDEs

 Neural Solver

 Neural Operator
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Neural Simulation

 Chronological overview

 Neural Solver: DGM[1]/DRM[2]/PINN[3]...

 Neural Operator: DeepONet[4]/FNO[5]… 

 Inverse Design: PINNs/DeepONets/AmorFEA[6]…
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Neural Solver

 Basic PINNs

 Parametrize solution with NNs and optimize following 

loss

 Graphical illustration of PINNs
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Neural Solver

 Variants of PINNs

 Loss Reweighting and Data Resampling

 Novel optimization targets

 Numerical Differentiation

 Variational Formulation

 Regularization terms

 Novel Neural Architectures

 Activation functions

 Feature preprocessing (embedding)

 Boundary Encoding

 Sequential Architecture/Convolutional Architecture

 Domain Decomposition
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Neural Solver

 Loss Reweighting

 Balance learning rates by gradient norms [7]

 NTK reweighting 

 Variance reweighting

 …

 Data Sampling

 Sample points with higher error with IS [8]
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Neural Solver

 Novel Optimization Targets--Variational Formulation

 For the following problem

 PINN optimizes

 Deep Ritz Method [2] optimizes

 VPINNs [9] choose a set of test functions
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Neural Solver

 Novel Optimization Targets—Regularization terms

 Gradient-enhanced PINNs [10]

 For PDEs, we penalize itself as well as its derivatives

 Loss function of gPINNs
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Neural Solver

 Novel Architectures

 Boundary encoding [11] (use hard boundary constraints)

 Feature Embedding [12] (e.g. Fourier features)

 Adaptive activation functions [13]…
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Neural Solver

 Novel Architectures

 Sequential Architectures [14]

 Solves time-dependent PDEs and uses LSTM architectures

 Convolutional Architectures [14]

 Replace spatial differentiation with numerical ones and use CNNs
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Neural Solver

 Novel Architectures—Domain Decomposition

 XPINNs [15]: use 𝐾 subnets for 𝐾 subdomains

 Loss functions:

 : Interface condition

 Continuity of physical quantities

 Conservation/continuity of 

other variables flow or gradients
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Neural Solver

 Summary of existing methods for neural solver
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Neural Operator

 Learning an operator ෨𝐺: Θ × Ω → ℝ𝑚

min
𝑤∈𝑊

𝐺𝑤 𝜃 𝒙 − ෨𝐺(𝜃)(𝒙)

where 𝜃 ∈ Θ is control/design parameters, 𝐺𝑤 is the trained 

neural model.

 Training dataset

 Data points: ෨𝐺 𝜃𝑖 𝒙𝑗

 Collocation points: 𝜃𝑖 , 𝒙𝑗 (physics-informed loss)

 Categories

 Direct Methods, Green’s Function learning, Grid-based 

Operator Learning, Graph-based Operator Learning.
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Direct Methods

 Directly parameterize ෨𝐺: Θ × Ω → ℝ𝑚 as a neural 

network, following the format in Universal 

Approximation Theorem of Operator
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Green’s Function learning

 We are interested when 𝜃 is a function ( ෨𝐺: 𝑓 ↦ 𝑢)

ℱ𝐿 𝑢 = 𝑓, 𝒙 ∈ Ω
ℬ𝐿 𝑢 = 𝑔, 𝒙 ∈ 𝜕Ω

where ℱ𝐿 and ℬ𝐿 are two linear operators

 Represent the solution via Green’s function

𝑢 𝒙 = න
Ω

𝒢 𝒙, 𝒚 𝑓 𝒚 𝑑𝒚 + 𝑢homo 𝑥

where 𝒢 𝒙, 𝒚 is parameterized by NN (double dimension)
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Grid/Graph-based Methods

 Grid-based operator learning (image-to-image)
෨𝐺: 𝑢 𝒙𝑖 ↦ 𝑣 𝒙𝑖

 Graph-based Methods (graph-to-graph)
෨𝐺: node features ↦ node features
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Neural Operator

 Open Challenges

 Incorporating physical priors

 Generalizability↑, Data Demand↓

 Close integration of physics knowledge and models,

in addition to physics-informed loss functions

 Reducing the cost of gathering datasets (major)

 Large design space Θ, complex geometry Ω

 High cost of data generating

 Developing large pre-trained models

 Modeling real-world physical systems
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Neural Operator

 Open Challenges

 Incorporating physical priors

 Reducing the cost of gathering datasets (major)

 Developing large pre-trained models

 Handle so many downstream tasks

 A possible to reduce data cost and training overhead

 Modeling real-world physical systems

 From idealized experiments  to real-world ones

 It may be helpful to borrow from the field of numerical computing

 Efficiently employed in industrial scenarios, e.g., optimization, 

simulation, etc.
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Theory in PIML

2022/12/15

ConvergenceExpression Ability

Error Estimation
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Expression Ability

2022/12/15

 It is well known that multi-layer neural networks are universal 

approximators, i.e., they can approximate any measurable function to 

arbitrary accuracy.

 A major concern in PIML is to approximate neural operator.

 One-layer neural networks can approximate any operators [16, 17]. 

(DeepONet)

 Next question: how many nodes do we need?

 Wide, shallow neural networks may need exponentially many neurons to 

obtain similar expression ability with deep, narrow ones [18].
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Expression Ability

2022/12/15

 [18] takes a first step for providing an upper bound of the width of the 

deeper neural networks for approximating operators.

 Future work: 

 design more effective architecture to approximate operators with fewer 

nodes is significant for designing more stable and effective algorithms

 analyze the expression ability of other architectures
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Convergence

2022/12/15

 evaluate the algorithm: whether it converges and its 

convergence speed

 combine optimization and PDEs

 current with little research: PINNs [19], neural operator 

[20], deep ritz methods [21]
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Error Estimation

2022/12/15

 There are different kinds of error: approximation error (the target loss), 

generalization error (generalize to unseen samples) ... 

 [22] first analyzes the approximation error and generalization error of 

DeepONet
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Theory in PIML

2022/12/15

 Future work: 

 design more effective architecture to approximate operators with fewer 

nodes is significant for designing more stable and effective algorithms

 analyze the expression ability of other architectures

 analyze the convergence of PINNs for different kinds of PDEs for 

designing more efficient architectures and algorithms
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Inverse Problem (Inverse Design)

 To optimize or discover unknown parameters of a 

physical system, including scientific discovery, shape 

optimization, optimal control, etc.

 Traditional methods

 SQP, Adjoint PDE

 infeasible in large-scale problems

 heavy computational cost

 non-differentiable physical process
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Inverse Design

 Solving inverse design usually involves multiple steps

 e.g., simulation, evaluation, configuration

 System Simulation & Evaluation

 Neural Surrogates

 PINN, Neural Operator, Neural Simulator

 Neural Representation

 Design Prediction

 Data Generation

 …
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Neural Surrogates

With PINN

 Directly extend PINN to inverse design[26]

ℒ = 𝜆𝑝ℒ𝑃𝐼𝑁𝑁 + 𝜆𝑑𝒥

 imbalance training objectives

 PINN with hard constraints (h-PINN)[23]

 imposing hard constraints with the penalty method and the 

augmented Lagrangian method

 Bi-level optimization framework[24]
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Neural Surrogates

With Neural Operator

 Trained differentiable neural operator predicting the 

state variables[25]

 using various models,e.g., DeepONet[27],Autoencoder[28]

With Neural Simulators

 Differentiable simulators mapping parameters to the 

values of interest to avoid numerical simulations[29]
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Other Methods

 Neural Representation

 parameterize the parameters/configurations with neural 

network to achieve more highly-detailed and continuous 

representations[30]

 Design Prediction

 map the desired targets to the design parameters[31]

 Data Generation

 generate novel samples with superior performance using 

generative models like VAE[32]
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Open Problems and Challenges

 Neural Surrogate Modeling

 balance of multiple loss terms and training convergence 

for physics-informed methods

 large demand of data for operator and simulator training

 Large Scale Application

 potential challenges like curse of dimensions, 

computational complexity in large scale scenarios

 Other Directions

 using neural networks in other steps of inverse design 

besides simulation
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Computer Vision and Graphics

 Traditional Visual Tasks (Classification & Detection)

 knowledge of symmetry, such as equivariance to 

rotation[33]

 Motion and Pose Analysis/Physical Scene Understanding

 knowledge of mechanics and kinematics, such as motion 

constraints[34], Hamiltonian canonical equations[35]

 Computer graphics

 knowledge of rendering, such as classical volume 

rendering equations[36]
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Reinforcement Learning

 Goal

 to interact with an unknown world to maximize reward, 

with/without the learning of world models

 Policy Training

 use knowledge to design rewards for specific goals, such 

as adaptive mesh refinement[37]

 Model Training

 use knowledge to learn a better world model, such as 

equations of continuous dynamics[38]

 Exploration Guiding

 use knowledge to restrict exploration to safe regions, such 

as logical sandboxes[39]
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Open Problems and Challenges

 Better Description of Physical World

 to learn meaningful representations from visual observations

 to find formulated representations of intuitive physics

 Generic Modeling of Physical Tasks

 to deal with new tasks from proper expert knowledge 

instead of case-by-case design

 Solving High-Dimensional Problems in RL

 Guaranteeing Safety in Complex, Uncertain Environments
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Conclusions

 Open challenges

 From methodological perspective

 Standardized dataset

 Better algorithms for inference and optimization

 Scalable algorithms for intuitive physics in real world

 From tasks perspective

 Better methods for neural simulation

 Inverse problems

 More applications in real world CV/RL
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Thank you!
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